Warmer Felix, Tanaka K, Xanthopoulos P, Nunami M, Nakata M, Beidler C D, Bozhenkov S A, Beurskens M N A, Brunner K J, Ford O P, Fuchert G, Funaba H, Geiger J, Gradic D, Ida K, Igami H, Kubo S, Langenberg A, Laqua H P, Lazerson S, Morisaki T, Osakabe M, Pablant N, Pasch E, Peterson B, Satake S, Seki R, Shimozuma T, Smith H M, Stange T, Stechow A V, Sugama H, Suzuki Y, Takahashi H, Tokuzawa T, Tsujimura T, Turkin Y, Wolf R C, Yamada I, Yanai R, Yasuhara R, Yokoyama M, Yoshimura Y, Yoshinuma M, Zhang D
Max-Planck-Institut für Plasmaphysik, Wendelsteinstrasse 1, 17491 Greifswald, Germany.
National Institute for Fusion Science, National Institutes on Natural Sciences, Toki, 509-5292, Japan.
Phys Rev Lett. 2021 Nov 24;127(22):225001. doi: 10.1103/PhysRevLett.127.225001.
We assess the magnetic field configuration in modern fusion devices by comparing experiments with the same heating power, between a stellarator and a heliotron. The key role of turbulence is evident in the optimized stellarator, while neoclassical processes largely determine the transport in the heliotron device. Gyrokinetic simulations elucidate the underlying mechanisms promoting stronger ion scale turbulence in the stellarator. Similar plasma performances in these experiments suggests that neoclassical and turbulent transport should both be optimized in next step reactor designs.
我们通过比较在相同加热功率下仿星器和螺旋管之间的实验,来评估现代聚变装置中的磁场结构。在优化的仿星器中,湍流的关键作用很明显,而新经典过程在很大程度上决定了螺旋管装置中的输运。回旋动理学模拟阐明了在仿星器中促进更强离子尺度湍流的潜在机制。这些实验中相似的等离子体性能表明,在下一代反应堆设计中,新经典输运和湍流输运都应得到优化。