Oliveira Jorge, Nogueira Diogo, Renna Francesco, Ferreira Carlos, Jorge Alipio M, Coimbra Miguel
Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:286-289. doi: 10.1109/EMBC46164.2021.9630559.
Cardiac auscultation is the key screening procedure to detect and identify cardiovascular diseases (CVDs). One of many steps to automatically detect CVDs using auscultation, concerns the detection and delimitation of the heart sound boundaries, a process known as segmentation. Whether to include or not a segmentation step in the signal classification pipeline is nowadays a topic of discussion. Up to our knowledge, the outcome of a segmentation algorithm has been used almost exclusively to align the different signal segments according to the heartbeat. In this paper, the need for a heartbeat alignment step is tested and evaluated over different machine learning algorithms, including deep learning solutions. From the different classifiers tested, Gate Recurrent Unit (GRU) Network and Convolutional Neural Network (CNN) algorithms are shown to be the most robust. Namely, these algorithms can detect the presence of heart murmurs even without a heartbeat alignment step. Furthermore, Support Vector Machine (SVM) and Random Forest (RF) algorithms require an explicit segmentation step to effectively detect heart sounds and murmurs, the overall performance is expected drop approximately 5% on both cases.
心脏听诊是检测和识别心血管疾病(CVD)的关键筛查程序。使用听诊自动检测心血管疾病的众多步骤之一,涉及心音边界的检测和界定,这一过程称为分割。在信号分类流程中是否包含分割步骤如今是一个讨论的话题。据我们所知,分割算法的结果几乎仅用于根据心跳对齐不同的信号段。在本文中,针对不同的机器学习算法,包括深度学习解决方案,对心跳对齐步骤的必要性进行了测试和评估。在测试的不同分类器中,门控循环单元(GRU)网络和卷积神经网络(CNN)算法表现出最强的鲁棒性。也就是说,即使没有心跳对齐步骤,这些算法也能检测到心脏杂音的存在。此外,支持向量机(SVM)和随机森林(RF)算法需要一个明确的分割步骤才能有效地检测心音和杂音,在这两种情况下总体性能预计会下降约5%。