Suppr超能文献

Can Heart Sound Denoising be Beneficial in Phonocardiogram Classification Tasksƒ.

作者信息

Asmare Melkamu Hunegnaw, Woldehanna Frehiwot, Janssens Luc, Vanrumste Bart

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:354-358. doi: 10.1109/EMBC46164.2021.9630454.

Abstract

The purpose of computer-aided diagnosis (CAD) systems is to improve the detection of diseases in a shorter time and with reduced subjectivity. A robust system frequently requires a noise-free input signal. For CADs which use heart sounds, this problem is critical as heart sounds are often low amplitude and affected by some unavoidable sources of noise such as movement artifacts and physiological sounds. Removing noises by using denoising algorithms can be beneficial in improving the diagnostics accuracy of CADs. In this study, four denoising algorithms were investigated. Each algorithm has been carefully adapted to fit the requirements of the phonocardiograph signal. The effect of the denoising algorithms was objectively compared based on the improvement it introduces in the classification performance of the heart sound dataset. According to the findings, using denoising methods directly before classification decreased the algorithm's classification performance because a murmur was also treated as noise and suppressed by the denoising process. However, when denoising using Wiener estimation-based spectral subtraction was used as a preprocessing step to improve the segmentation algorithm, it increased the system's classification performance with a sensitivity of 96.0%, a specificity of 74.0%, and an overall score of 85.0%. As a result, to improve performance, denoising can be added as a preprocessing step into heart sound classifiers that are based on heart sound segmentation.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验