Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:3197-3200. doi: 10.1109/EMBC46164.2021.9629759.
In functional magnetic resonance imaging (fMRI), spatial smoothing procedure is generally a stable step in the preprocessing stream. Previous research (including ours) suggested dependency of the static functional connectivity on the size of the spatial smoothing kernel size. But its impact on the time-varying patterns of functional connectivity has not been investigated. Here, we sought to identify the effects of spatial smoothing on brain dynamics by performing dynamic functional network connectivity (dFNC) and meta-state analysis, a unique approach capable of examining a higher-dimensional temporal dynamism of whole-brain functional connectivity. Gaussian smoothing kernel with different widths at half of the maximum of the height of the Gaussian (4, 8, and 12 mm FWHM) were used during preprocessing prior to the group independent component analysis (ICA) with a relatively high model order of 75. dFNC was conducted using the sliding-time window approach and k-means clustering algorithm. Meta-state dynamics method was performed by reducing the number of windowed FNC correlations using principal components analysis (PCA), temporal and spatial ICA and k-means. Results revealed robust effects of spatial smoothing on the connectivity dynamics of several network pairs including a variety of cognitive/attention networks in a connectivity state with the highest occurrence (FDR corrected-p < 0.01). Meta-state analyses indicated significant changes in meta-state metrics including the number of meta-states, meta-state changes, meta-state span, and the total distance. These changes were particularly pronounced when we compared resting state data smoothed with 8 vs. 12 mm FWHM. Our preliminary findings give insights into the effects of spatial smoothing kernel size on the dynamics of functional connectivity and its consequences on meta-state parameters. It also provides further indication of the importance of evaluating variance associated with preprocessing steps on analysis outcomes.
在功能磁共振成像(fMRI)中,空间平滑处理通常是预处理流程中的一个稳定步骤。先前的研究(包括我们的研究)表明,静态功能连接性依赖于空间平滑核大小。但其对功能连接时变模式的影响尚未得到研究。在这里,我们通过进行动态功能网络连接(dFNC)和元状态分析来寻找空间平滑对大脑动力学的影响,这是一种独特的方法,能够检查整个大脑功能连接的更高维时间动态。在组独立成分分析(ICA)之前,使用不同半高全宽(4、8 和 12mm FWHM)的高斯平滑核进行预处理,模型阶数相对较高,为 75。使用滑动时间窗口方法和 k-均值聚类算法进行 dFNC。元状态动力学方法通过使用主成分分析(PCA)、时间和空间 ICA 和 k-均值减少窗口化 FNC 相关的数量来进行。结果表明,空间平滑对包括各种认知/注意力网络在内的几个网络对的连接动力学具有稳健的影响,这种连接状态的出现频率最高(经 FDR 校正,p < 0.01)。元状态分析表明元状态指标发生了显著变化,包括元状态数量、元状态变化、元状态跨度和总距离。当我们将 8mm 和 12mm FWHM 平滑的静息态数据进行比较时,这些变化尤为明显。我们的初步研究结果深入了解了空间平滑核大小对功能连接动力学的影响及其对元状态参数的影响。它还进一步表明,在分析结果中评估与预处理步骤相关的方差的重要性。