Suppr超能文献

增强浅层白质纤维束的自动分割用于概率追踪数据集。

Enhanced Automatic Segmentation for Superficial White Matter Fiber Bundles for Probabilistic Tractography Datasets.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:3654-3658. doi: 10.1109/EMBC46164.2021.9630529.

Abstract

This paper presents an enhanced algorithm for automatic segmentation of superficial white matter (SWM) bundles from probabilistic dMRI tractography datasets, based on a multi-subject bundle atlas. Previous segmentation methods use the maximum Euclidean distance between corresponding points of the subject fibers and the atlas centroids. However, this scheme might include noisy fibers. Here, we propose a three step approach to discard noisy fibers improving the identification of fibers. The first step applies a fiber clustering and the segmentation is performed between the centroids of the clusters and the atlas centroids. This step removes outliers and enables a better identification of fibers with similar shapes. The second step applies a fiber filter based on two different fiber similarities. One is the Symmetrized Segment-Path Distance (SSPD) over 2D ISOMAP and the other is an adapted version of SSPD for 3D space. The last step eliminates noisy fibers by removing those that connect regions that are far from the main atlas bundle connections. We perform an experimental evaluation using ten subjects of the Human Connectome (HCP) database. The evaluation only considers the bundles connecting precentral and postcentral gyri, with a total of seven bundles per hemisphere. For comparison, the bundles of the ten subjects were manually segmented. Bundles segmented with our method were evaluated in terms of similarity to manually segmented bundles and the final number of fibers. The results show that our approach obtains bundles with a higher similarity score than the state-of-the-art method and maintains a similar number of fibers.Clinical relevance-Many brain pathologies or disorders can occur in specific regions of the SWM automatic segmentation of reliable SWM bundles would help applications to clinical research.

摘要

本文提出了一种基于多主体束图谱的概率弥散磁共振成像轨迹数据自动分割浅层白质(SWM)束的增强算法。以前的分割方法使用主体纤维与图谱质心的对应点之间的最大欧几里得距离。然而,这种方案可能包括有噪声的纤维。在这里,我们提出了一种三步法来剔除噪声纤维,从而提高纤维的识别能力。第一步是进行纤维聚类,然后在聚类质心和图谱质心之间进行分割。这一步可以剔除异常值,并更好地识别形状相似的纤维。第二步是基于两种不同的纤维相似度应用纤维滤波器。一种是二维 ISOMAP 上的对称分段路径距离(SSPD),另一种是 3D 空间的 SSPD 的自适应版本。第三步通过剔除那些连接与主要图谱束连接距离较远的区域的纤维来剔除噪声纤维。我们使用 HCP 数据库的十个主体进行了实验评估。评估仅考虑连接中央前回和中央后回的束,每个半球共有七个束。为了比较,手动分割了十个主体的束。我们的方法分割的束在与手动分割束的相似性和最终纤维数量方面进行了评估。结果表明,与最先进的方法相比,我们的方法获得的束具有更高的相似性评分,并保持相似数量的纤维。临床相关性许多脑病理学或障碍可能发生在 SWM 的特定区域,可靠的 SWM 束的自动分割将有助于应用于临床研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验