Suppr超能文献

优化早产儿迟发性败血症中中枢性呼吸暂停的检测。

Optimized Detection of Central Apneas Preceding Late-Onset Sepsis in Premature Infants.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:5463-5468. doi: 10.1109/EMBC46164.2021.9629528.

Abstract

In neonatal intensive care units, respiratory traces of premature infants developing late onset sepsis (LOS) may also show episodes of apneas. However, since clinical patient monitors often underdetect apneas, clinical experts are required to investigate patients' traces looking for these events. In this work we present a method to optimize an existing algorithm for central apnea (CA) detection and how we used it together with human annotations to investigate the occurrence of CAs preceding LOS.The algorithm was optimized by using a previously-annotated dataset consisting of 90 hours, extracted from 10 premature infants. This allowed to double precision (19.7% vs 9.3%, median values per patient) without affecting recall (90.5% vs 94.5%) compared to the original algorithm. This choice caused the missed identification of just 1 additional CA (4 vs 3) in the whole dataset. The optimized algorithm was then used to annotate a second dataset consisting of 480 hours, extracted from 10 premature infants diagnosed with LOS. Annotations were corrected by two clinical experts.A significantly higher number of CA annotations was found in the 6 hours prior to sepsis onset (p-value < 0.05). The use of the optimized algorithm followed by human annotations proved to be a suitable, time-efficient method to annotate CAs before sepsis in premature infants, enabling future use in large datasets.

摘要

在新生儿重症监护病房中,患有晚发性败血症 (LOS) 的早产儿的呼吸轨迹也可能显示呼吸暂停。然而,由于临床患者监测器经常检测不到呼吸暂停,因此需要临床专家调查患者的轨迹以寻找这些事件。在这项工作中,我们提出了一种优化现有中枢性呼吸暂停 (CA) 检测算法的方法,以及如何将其与人工注释结合使用来调查 LOS 之前 CA 的发生情况。该算法是通过使用一个以前注释过的数据集进行优化的,该数据集由 10 名早产儿的 90 小时数据组成。与原始算法相比,这使得精度(中位数每个患者为 19.7% 对 9.3%)提高了一倍,而召回率(90.5% 对 94.5%)保持不变。这一选择导致在整个数据集中仅错过了 1 次 CA (4 次对 3 次)的识别。然后,将优化后的算法用于注释由 10 名被诊断为 LOS 的早产儿组成的第二个 480 小时数据集。注释由两名临床专家进行纠正。在败血症发作前的 6 小时内发现 CA 注释的数量明显增加(p 值<0.05)。使用优化后的算法和人工注释被证明是一种合适且高效的方法,可以在早产儿发生败血症之前注释 CA,为未来在大型数据集上的应用奠定了基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验