Mohammed Sohaib, Kuzmenko Ivan, Gadikota Greeshma
School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA.
Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, USA.
Nanoscale. 2021 Dec 23;14(1):127-139. doi: 10.1039/d1nr06807e.
Achieving reversible and tunable assembly of silica nanoparticles at liquid-liquid interfaces is vital for a wide range of scientific and technological applications including sustainable subsurface energy applications, catalysis, drug delivery and material synthesis. In this study, we report the mechanisms controlling the assembly of silica nanoparticles (dia. 50 nm and 100 nm) at water-heptane and water-toluene interfaces using sodium dodecyl sulfate (SDS) surfactant with concentrations ranging from 0.001-0.1 wt% using ultrasmall/small-angle X-ray scattering, cryogenic scanning electron microscopy imaging and classical molecular dynamics simulations. The results show that the assembly of silica nanoparticles at water-hydrocarbon interfaces can be tuned by controlling the concentrations of SDS. Silica nanoparticles are found to: (a) dominate the interfaces in the absence of interfacial SDS molecules, (b) coexist with SDS at the interfaces at low surfactant concentration of 0.001 wt% and (c) migrate toward the aqueous phase at a high SDS concentration of 0.1 wt%. Energetic analyses suggest that the van der Waals and electrostatic interactions between silica nanoparticles and SDS surfactants increase with SDS concentration. However, the favorable van der Waals and electrostatic interactions between the silica nanoparticles and toluene or heptane decrease with increasing SDS concentration. As a result, the silica nanoparticles migrate away from the water-hydrocarbon interface and towards bulk water at higher SDS concentrations. These calibrated investigations reveal the mechanistic basis for tuning silica nanoparticle assembly at complex interfaces.
实现二氧化硅纳米颗粒在液 - 液界面的可逆和可调组装对于包括可持续地下能源应用、催化、药物递送和材料合成在内的广泛科学技术应用至关重要。在本研究中,我们报告了使用浓度范围为0.001 - 0.1 wt%的十二烷基硫酸钠(SDS)表面活性剂,通过超小角/小角X射线散射、低温扫描电子显微镜成像和经典分子动力学模拟,控制二氧化硅纳米颗粒(直径50 nm和100 nm)在水 - 庚烷和水 - 甲苯界面组装的机制。结果表明,通过控制SDS的浓度可以调节二氧化硅纳米颗粒在水 - 烃界面的组装。发现二氧化硅纳米颗粒:(a)在没有界面SDS分子的情况下主导界面;(b)在表面活性剂浓度为0.001 wt%的低浓度下与SDS在界面共存;(c)在SDS浓度为0.1 wt%的高浓度下向水相迁移。能量分析表明,二氧化硅纳米颗粒与SDS表面活性剂之间的范德华力和静电相互作用随SDS浓度增加。然而,二氧化硅纳米颗粒与甲苯或庚烷之间有利的范德华力和静电相互作用随SDS浓度增加而降低。结果,在较高SDS浓度下,二氧化硅纳米颗粒从水 - 烃界面迁移离开并朝向大量水迁移。这些经过校准的研究揭示了在复杂界面调节二氧化硅纳米颗粒组装的机制基础。