Suppr超能文献

具有亚成分预测因子的多变量对数对比回归:检验早产儿肠道微生物群与神经行为结局之间的关联。

Multivariate log-contrast regression with sub-compositional predictors: Testing the association between preterm infants' gut microbiome and neurobehavioral outcomes.

作者信息

Liu Xiaokang, Cong Xiaomei, Li Gen, Maas Kendra, Chen Kun

机构信息

Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, USA.

School of Nursing, University of Connecticut, Storrs, Connecticut, USA.

出版信息

Stat Med. 2022 Feb 10;41(3):580-594. doi: 10.1002/sim.9273. Epub 2021 Dec 12.

Abstract

To link a clinical outcome with compositional predictors in microbiome analysis, the linear log-contrast model is a popular choice, and the inference procedure for assessing the significance of each covariate is also available. However, with the existence of multiple potentially interrelated outcomes and the information of the taxonomic hierarchy of bacteria, a multivariate analysis method that considers the group structure of compositional covariates and an accompanying group inference method are still lacking. Motivated by a study for identifying the microbes in the gut microbiome of preterm infants that impact their later neurobehavioral outcomes, we formulate a constrained integrative multi-view regression. The neurobehavioral scores form multivariate responses, the log-transformed sub-compositional microbiome data form multi-view feature matrices, and a set of linear constraints on their corresponding sub-coefficient matrices ensures the sub-compositional nature. We assume all the sub-coefficient matrices are possible of low-rank to enable joint selection and inference of sub-compositions/views. We propose a scaled composite nuclear norm penalization approach for model estimation and develop a hypothesis testing procedure through de-biasing to assess the significance of different views. Simulation studies confirm the effectiveness of the proposed procedure. We apply the method to the preterm infant study, and the identified microbes are mostly consistent with existing studies and biological understandings.

摘要

在微生物组分析中,为了将临床结果与成分预测因子联系起来,线性对数对比模型是一种常用的选择,并且评估每个协变量显著性的推断程序也已具备。然而,由于存在多个潜在相互关联的结果以及细菌分类层次结构的信息,一种考虑成分协变量组结构的多变量分析方法以及相应的组推断方法仍然缺失。受一项关于识别影响早产儿后期神经行为结果的肠道微生物组中微生物的研究启发,我们构建了一个约束整合多视图回归模型。神经行为评分构成多变量响应,对数变换后的子成分微生物组数据构成多视图特征矩阵,并且对其相应子系数矩阵的一组线性约束确保了子成分的性质。我们假设所有子系数矩阵都可能是低秩的,以便能够对子成分/视图进行联合选择和推断。我们提出一种缩放复合核范数惩罚方法用于模型估计,并通过去偏开发一种假设检验程序来评估不同视图的显著性。模拟研究证实了所提出程序的有效性。我们将该方法应用于早产儿研究,所识别出的微生物大多与现有研究和生物学认知一致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验