Suppr超能文献

小麦光合作用及其相关生物化学的位点特异性、基因型和时间变化()。

Site-specific, genotypic and temporal variation in photosynthesis and its related biochemistry in wheat ().

机构信息

Centre for Crop Health, University of Southern Queensland, Toowoomba, Qld 4350, Australia.

Hawkesbury Institute for the Environment, Western Sydney University, LB 1797, Penrith, NSW 2753, Australia.

出版信息

Funct Plant Biol. 2022 Jan;49(2):115-131. doi: 10.1071/FP21111.

Abstract

Photosynthesis in wheat (Triticum aestivum L.) pericarps may contribute appreciably to wheat grain yield. Consequently, we investigated the temporal variation of traits related to photosynthesis and sucrose metabolism in the pericarps and flag leaves of three wheat genotypes, Huandoy, Amurskaja 75 and Greece 25, which are reported to differ in expression of genes related to the C4 pathway in wheat grain. Significant site-specific, genotypic and temporal variation in the maximum carboxylation rate (Vc max ) and maximum rates of electron transport (J max ) (biological capacity of carbon assimilation) were observed early in ontogeny that dissipated by late grain filling. Although the transcript abundance of rbcS and rbcL in flag leaves was significantly higher than in the pericarps, in line with their photosynthetic prominence, both organ types displayed similar expression patterns among growth stages. The higher N concentrations in the pericarps during grain enlargement suggest increased Rubisco; however, expression of rbcS and rbcL indicated the contrary. From heading to 14days post-anthesis, wheat pericarps exhibited a strong, positive correlation between biological capacity for carbon assimilation and expression of key genes related to sucrose metabolism (SPS1 , SUS1 and SPP1 ). The strong correlation between spike dry weight and the biological capacity for carbon assimilation along with other findings of this study suggest that metabolic processes in wheat spikes may play a major role in grain filling, total yield and quality.

摘要

小麦(Triticum aestivum L.)果皮中的光合作用可能对小麦籽粒产量有重要贡献。因此,我们研究了三个小麦基因型(Huandoy、Amurskaja 75 和 Greece 25)果皮和旗叶中与光合作用和蔗糖代谢相关的特性的时间变化,这三个基因型据报道在与小麦籽粒中 C4 途径相关的基因表达上存在差异。在个体发育早期就观察到了最大羧化速率(Vc max )和最大电子传递速率(J max )(碳同化的生物学能力)的显著的、特定部位的、基因型的和时间的变化,这些变化在灌浆后期消失。尽管旗叶中 rbcS 和 rbcL 的转录丰度明显高于果皮,但与它们的光合作用优势一致,这两种器官类型在生长阶段的表达模式相似。在籽粒增大过程中,果皮中的氮浓度较高,表明 Rubisco 增加;然而,rbcS 和 rbcL 的表达则表明相反的情况。从抽穗到花后 14 天,小麦果皮中与碳同化的生物学能力呈强烈的正相关,与蔗糖代谢相关的关键基因(SPS1 、SUS1 和 SPP1 )的表达呈强烈正相关。穗干重与碳同化的生物学能力之间的强相关性以及本研究的其他发现表明,小麦穗的代谢过程可能在灌浆、总产量和质量中起主要作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验