Suppr超能文献

屈指腱鞘感染诊断与治疗数据的五年回顾性分析:在手术冲洗前,我们能否准确预测感染的存在及严重程度?

A Five-Year Retrospective Analysis of Diagnostic and Treatment Data of Flexor Sheath Infections: Can We Accurately Predict the Presence and Severity of Infection Prior to Surgical Washout?

作者信息

Muscat Joseph, Manton Robert, Ahmed Rowaa, Johnson Oscar, Ridha Hyder, Goon Patrick

机构信息

Trauma and Orthopaedics, East and North Hertfordshire NHS Trust, Stevenage, GBR.

Plastic Surgery, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, GBR.

出版信息

Cureus. 2021 Nov 18;13(11):e19715. doi: 10.7759/cureus.19715. eCollection 2021 Nov.

Abstract

Flexor sheath infections (FSIs) are soft tissue infections affecting the hand, which, if mismanaged, can have devastating consequences. Clinical assessment is key to diagnosis, with many relying on Kanavel cardinal signs as an aid. To prevent unnecessary operative intervention and the associated post-operative combined patient and healthcare burden, it is key that patients with FSIs are correctly identified. It would also be useful to stratify severity of FSIs without surgical exploration. To date, there is no accepted method to assist clinicians in doing so. We retrospectively analysed data from a five-year period to see if we could identify pre-operatively (a) accurate predictors of FSIs and (b) severity of the FSIs. We established that only the presence of all four Kanavel cardinal signs significantly predicted the presence of an FSI. No other variable that was available prior to surgery could predict either presence or severity of infection.

摘要

屈指肌腱鞘感染(FSIs)是影响手部的软组织感染,如果处理不当,可能会产生毁灭性后果。临床评估是诊断的关键,许多人依靠卡纳韦尔主要体征作为辅助手段。为防止不必要的手术干预以及术后患者和医疗保健的相关负担,正确识别FSIs患者至关重要。在不进行手术探查的情况下对FSIs的严重程度进行分层也会很有用。迄今为止,尚无公认的方法来协助临床医生做到这一点。我们回顾性分析了五年期间的数据,以查看是否能够在术前识别出(a)FSIs的准确预测指标和(b)FSIs的严重程度。我们确定只有所有四个卡纳韦尔主要体征均存在才能显著预测FSIs的存在。手术前可用的其他变量均无法预测感染的存在或严重程度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8fc2/8650629/0cc03824e5a2/cureus-0013-00000019715-i01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验