Suppr超能文献

基于磁性纳米粒子的铁磁共振的闭环温度调节集成微加热阵列。

An Integrated Microheater Array With Closed-Loop Temperature Regulation Based on Ferromagnetic Resonance of Magnetic Nanoparticles.

出版信息

IEEE Trans Biomed Circuits Syst. 2021 Dec;15(6):1236-1249. doi: 10.1109/TBCAS.2021.3135431. Epub 2022 Feb 17.

Abstract

Magnetic nanoparticles (MNP) can generate localized heat in response to an external alternating magnetic field, a unique capability that has enabled a wide range of biomedical applications. Compared with other heating mechanisms such as dielectric heating and ohmic heating, MNP-based magnetic heating offers superior material specificity and minimal damage to the surrounding environment since most biological systems are non-magnetic. This paper presents a first-of-its-kind fully integrated magnetic microheater array based on the ferromagnetic resonance of MNP at Gigahertz (GHz) microwave frequencies. Each microheater pixel consists of a stacked oscillator to actuate MNP with a high magnetic field intensity and an electro-thermal feedback loop for precise temperature regulation. The four-stacked/five-stacked oscillator achieves >19.5/26.5 V measured RF output swing from 1.18 to 2.62 GHz while only occupying a single inductor footprint, which eliminates the need for additional RF power amplifiers for compact pixel size (0.6 mm × 0.7 mm) and high dc-to-RF energy efficiency (45%). The electro-thermal feedback loop senses the local temperature and enables closed-loop temperature regulation by controlling the biasing voltage of the stacked oscillator, achieving a measured maximum/RMS temperature error of 0.53/0.29 °C. In the localized heating demonstration, two PDMS membranes mixed with and without MNP are attached to the microheater array chip, respectively, and their surface temperatures are monitored by an infrared (IR) camera. Only the area above the inductor (∼0.03 mm) is efficiently heated up to 43 °C for the MNP-PDMS membrane, while the baseline temperature stays <37.8 °C for the PDMS membrane without MNP.

摘要

磁性纳米粒子 (MNP) 可以在外加交变磁场的作用下产生局部热量,这种独特的特性使其能够应用于广泛的生物医学领域。与介电加热和欧姆加热等其他加热机制相比,基于 MNP 的磁加热具有优异的材料特异性和对周围环境的最小损伤,因为大多数生物系统是非磁性的。本文提出了一种基于 MNP 在千兆赫兹 (GHz) 微波频率下的铁磁共振的全集成磁性微加热器阵列,这在同类研究中尚属首次。每个微加热器像素由一个堆叠振荡器组成,该振荡器利用高强度磁场来驱动 MNP,并采用电-热反馈回路来实现精确的温度调节。四堆叠/五堆叠振荡器在 1.18 至 2.62 GHz 的频率范围内实现了>19.5/26.5 V 的测量射频输出摆幅,而仅占用单个电感器的足迹,这消除了对额外的射频功率放大器的需求,从而实现了紧凑的像素尺寸(0.6 毫米×0.7 毫米)和高直流到射频能量效率(45%)。电-热反馈回路感测局部温度,并通过控制堆叠振荡器的偏置电压来实现闭环温度调节,从而实现了测量的最大/均方根温度误差为 0.53/0.29°C。在局部加热演示中,分别将含有和不含有 MNP 的两个 PDMS 膜附着在微加热器阵列芯片上,并通过红外 (IR) 相机监测它们的表面温度。只有在感应器上方的区域(约 0.03 毫米)才能有效地将 MNP-PDMS 膜加热到 43°C,而没有 MNP 的 PDMS 膜的基础温度保持在<37.8°C。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验