Suppr超能文献

人口减少和谱系特异性适应是新西兰几维鸟的特征。

Demographic decline and lineage-specific adaptations characterize New Zealand kiwi.

机构信息

Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada ON M1C 1A4.

Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada ON M5S 3B2.

出版信息

Proc Biol Sci. 2021 Dec 22;288(1965):20212362. doi: 10.1098/rspb.2021.2362. Epub 2021 Dec 15.

Abstract

Small and fragmented populations may become rapidly differentiated due to genetic drift, making it difficult to distinguish whether neutral genetic structure is a signature of recent demographic events, or of long-term evolutionary processes that could have allowed populations to adaptively diverge. We sequenced 52 whole genomes to examine Holocene demographic history and patterns of adaptation in kiwi (), and recovered 11 strongly differentiated genetic clusters corresponding to previously recognized lineages. Demographic models suggest that all 11 lineages experienced dramatic population crashes relative to early- or mid-Holocene levels. Small population size is associated with low genetic diversity and elevated genetic differentiation (), suggesting that population declines have strengthened genetic structure and led to the loss of genetic diversity. However, population size is not correlated with inbreeding rates. Eight lineages show signatures of lineage-specific selective sweeps (284 sweeps total) that are unlikely to have been caused by demographic stochasticity. Overall, these results suggest that despite strong genetic drift associated with recent bottlenecks, most kiwi lineages possess unique adaptations and should be recognized as separate adaptive units in conservation contexts. Our work highlights how whole-genome datasets can address longstanding uncertainty about the evolutionary and conservation significance of small and fragmented populations of threatened species.

摘要

小而分散的种群可能由于遗传漂变而迅速分化,使得难以区分中性遗传结构是近期人口事件的特征,还是长期进化过程的特征,而这些过程可能使种群能够适应性地分化。我们对 52 个全基因组进行测序,以研究几维鸟()的全新世种群历史和适应模式,结果发现了 11 个与先前已识别谱系相对应的强烈分化的遗传群。种群动态模型表明,所有 11 个谱系都经历了相对于全新世早期或中期水平的剧烈种群崩溃。小种群规模与低遗传多样性和高遗传分化相关(),表明种群减少强化了遗传结构,并导致遗传多样性的丧失。然而,种群规模与近交率无关。8 个谱系显示出谱系特异性选择清扫的特征(共 284 个清扫),这不太可能是由种群随机波动引起的。总的来说,这些结果表明,尽管与最近的瓶颈期相关的遗传漂变很强,但大多数几维鸟谱系都具有独特的适应能力,在保护背景下应被视为独立的适应单位。我们的工作强调了全基因组数据集如何解决有关受威胁物种的小而分散种群的进化和保护意义的长期不确定性。

相似文献

1
Demographic decline and lineage-specific adaptations characterize New Zealand kiwi.
Proc Biol Sci. 2021 Dec 22;288(1965):20212362. doi: 10.1098/rspb.2021.2362. Epub 2021 Dec 15.
2
Recent Evolutionary History of Tigers Highlights Contrasting Roles of Genetic Drift and Selection.
Mol Biol Evol. 2021 May 19;38(6):2366-2379. doi: 10.1093/molbev/msab032.
3
Demography, genetics, and decline of a spatially structured population of lekking bird.
Oecologia. 2021 Jan;195(1):117-129. doi: 10.1007/s00442-020-04808-4. Epub 2021 Jan 3.
4
Inbreeding and endangered species management: is New Zealand out of step with the rest of the world?
Conserv Biol. 2006 Feb;20(1):38-47. doi: 10.1111/j.1523-1739.2005.00282.x.
8
Historical Genomes Reveal the Genomic Consequences of Recent Population Decline in Eastern Gorillas.
Curr Biol. 2019 Jan 7;29(1):165-170.e6. doi: 10.1016/j.cub.2018.11.055. Epub 2018 Dec 27.
9
High genetic load without purging in caribou, a diverse species at risk.
Curr Biol. 2024 Mar 25;34(6):1234-1246.e7. doi: 10.1016/j.cub.2024.02.002. Epub 2024 Feb 27.

引用本文的文献

1
Insights into Aotearoa New Zealand's biogeographic history provided by the study of natural hybrid zones.
J R Soc N Z. 2022 Apr 11;54(1):55-74. doi: 10.1080/03036758.2022.2061020. eCollection 2024.
3
Genomic insights into the evolutionary relationships and demographic history of kiwi.
PLoS One. 2022 Oct 10;17(10):e0266430. doi: 10.1371/journal.pone.0266430. eCollection 2022.

本文引用的文献

1
The inflated significance of neutral genetic diversity in conservation genetics.
Proc Natl Acad Sci U S A. 2021 Mar 9;118(10). doi: 10.1073/pnas.2015096118.
2
Bayesian Inference of Species Trees using Diffusion Models.
Syst Biol. 2021 Jan 1;70(1):145-161. doi: 10.1093/sysbio/syaa051.
3
A Likelihood Approach for Uncovering Selective Sweep Signatures from Haplotype Data.
Mol Biol Evol. 2020 Oct 1;37(10):3023-3046. doi: 10.1093/molbev/msaa115.
5
Genomic Patterns of Local Adaptation under Gene Flow in Arabidopsis lyrata.
Mol Biol Evol. 2019 Nov 1;36(11):2557-2571. doi: 10.1093/molbev/msz149.
6
WebGestalt 2019: gene set analysis toolkit with revamped UIs and APIs.
Nucleic Acids Res. 2019 Jul 2;47(W1):W199-W205. doi: 10.1093/nar/gkz401.
7
Joint Estimates of Heterozygosity and Runs of Homozygosity for Modern and Ancient Samples.
Genetics. 2019 Jul;212(3):587-614. doi: 10.1534/genetics.119.302057. Epub 2019 May 14.
8
RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference.
Bioinformatics. 2019 Nov 1;35(21):4453-4455. doi: 10.1093/bioinformatics/btz305.
9
RAiSD detects positive selection based on multiple signatures of a selective sweep and SNP vectors.
Commun Biol. 2018 Jun 27;1:79. doi: 10.1038/s42003-018-0085-8. eCollection 2018.
10
Inferring Population Structure and Admixture Proportions in Low-Depth NGS Data.
Genetics. 2018 Oct;210(2):719-731. doi: 10.1534/genetics.118.301336. Epub 2018 Aug 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验