Suppr超能文献

原位电化学转化制备结构优化的VEG@MXene阴极用于增强锌离子存储

In Situ Electrochemical Transformation toward Structure Optimized VEG@MXene Cathode for Enhanced Zinc-Ion Storage.

作者信息

Li Xinjie, Zhu Xiaodong, Cao Ziyi, Xu Zhenglong, Shen Jianfeng, Ye Mingxin

机构信息

Institute of Special Materials and Technology, Fudan University, Shanghai, 200433, China.

Department of Materials Science, Fudan University, Shanghai, 200433, China.

出版信息

Small. 2022 Mar;18(9):e2105325. doi: 10.1002/smll.202105325. Epub 2021 Dec 17.

Abstract

Vanadium-based derivatives, featuring affordable cost and high theoretical capacity, have gathered widespread interest in the context of aqueous zinc-ion batteries (ZIBs). However, the further application of vanadium-based materials is hindered by the limited electrical conductivity and cycling lifespan. Herein, 1D chain-like structure vanadyl ethylene glycolate (VEG, (VO(CH O) )), growing on the Ti C T MXene nanosheets, is synthesized via a one-step oil-bath heating process as cathode materials for ZIBs. Benefiting from the hybrid structure with high conductivity and abundant reactive sites, the VEG@MXene cathode exhibits a remarkable specific capacity (360.3 mAh g at 0.5 A g ), and impressive capacity retention (up to 85.2% after 3000 cycles at 10 A g ). Mechanism analysis reveals a gradual phase transition from the original VEG on MXene to the stable Zn V O (OH) ·2H O nanoflakes accompanied by continuous zinc ion intercalation/deintercalation, offering more pathways for zinc ion transport. This work suggests that engineering conductivity-enhanced vanadium-based materials is a rational approach for developing promising cathode materials of ZIBs.

摘要

钒基衍生物由于成本低廉且理论容量高,在水系锌离子电池(ZIBs)领域引起了广泛关注。然而,钒基材料的进一步应用受到其有限的电导率和循环寿命的阻碍。在此,通过一步油浴加热法合成了生长在Ti₃C₂Tₓ MXene纳米片上的一维链状结构乙二醇氧钒(VEG,(VO(CH₂O₂))),作为ZIBs的阴极材料。得益于具有高电导率和丰富活性位点的混合结构,VEG@MXene阴极展现出显著的比容量(在0.5 A g⁻¹时为360.3 mAh g⁻¹),以及令人印象深刻的容量保持率(在10 A g⁻¹下循环3000次后高达85.2%)。机理分析表明,伴随着锌离子的持续嵌入/脱嵌,从MXene上的原始VEG到稳定的Zn₃V₂O₇(OH)₂·2H₂O纳米片会发生逐渐的相变,为锌离子传输提供了更多途径。这项工作表明,设计电导率增强的钒基材料是开发有前景的ZIBs阴极材料的合理方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验