Suppr超能文献

基于形状模型和强化学习的在线硬斑块挖掘在多器官分割中的应用。

Online Hard Patch Mining Using Shape Models and Bandit Algorithm for Multi-Organ Segmentation.

出版信息

IEEE J Biomed Health Inform. 2022 Jun;26(6):2648-2659. doi: 10.1109/JBHI.2021.3136597. Epub 2022 Jun 3.

Abstract

Hard sample selection can effectively improve model convergence by extracting the most representative samples from a training set. However, due to the large capacity of medical images, existing sampling strategies suffer from insufficient exploitation for hard samples or high time cost for sample selection when adopted by 3D patch-based models in the field of multi-organ segmentation. In this paper, we present a novel and effective online hard patch mining (OHPM) algorithm. In our method, an average shape model that can be mapped with all training images is constructed to guide the exploration of hard patches and aggregate feedback from predicted patches. The process of hard mining is formalized as a multi-armed bandit problem and solved with bandit algorithms. With the shape model, OHPM requires negligible time consumption and can intuitively locate difficult anatomical areas during training. The employment of bandit algorithms ensures online and sufficient hard mining. We integrate OHPM with advanced segmentation networks and evaluate them on two datasets containing different anatomical structures. Comparative experiments with other sampling strategies demonstrate the superiority of OHPM in boosting segmentation performance and improving model convergence. The results in each dataset with each network suggest that OHPM significantly outperforms other sampling strategies by nearly 2% average Dice score.

摘要

硬样本选择可以通过从训练集中提取最具代表性的样本,有效地提高模型的收敛性。然而,由于医学图像的容量较大,现有的采样策略在 3D 基于补丁的模型应用于多器官分割领域时,要么无法充分挖掘硬样本,要么采样选择的时间成本过高。在本文中,我们提出了一种新颖而有效的在线硬补丁挖掘(OHPM)算法。在我们的方法中,构建了一个可以映射所有训练图像的平均形状模型,以指导硬补丁的探索和来自预测补丁的聚合反馈。硬挖掘的过程被形式化为一个多臂老虎机问题,并通过老虎机算法来解决。利用形状模型,OHPM 仅需要极少的时间消耗,并且可以在训练过程中直观地定位困难的解剖区域。使用老虎机算法可以确保在线和充分的硬挖掘。我们将 OHPM 与先进的分割网络集成,并在包含不同解剖结构的两个数据集上对其进行评估。与其他采样策略的对比实验表明,OHPM 在提高分割性能和改善模型收敛性方面具有优越性。在每个网络的每个数据集上的结果表明,OHPM 在平均 Dice 得分上比其他采样策略高出近 2%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验