Suppr超能文献

比较和结合 MRE、T1ρ、SWI、IVIM 和 DCE-MRI 对兔肝纤维化分期:基于多参数 MRI 的预测模型评估。

Comparing and combining MRE, T1ρ, SWI, IVIM, and DCE-MRI for the staging of liver fibrosis in rabbits: Assessment of a predictive model based on multiparametric MRI.

机构信息

Department of Radiology, Sixth Affiliated Hospital of Shenzhen University, Shenzhen, China.

Department of Radiology, The University of Hong Kong Shenzhen Hospital, Shenzhen, China.

出版信息

Magn Reson Med. 2022 May;87(5):2424-2435. doi: 10.1002/mrm.29126. Epub 2021 Dec 21.

Abstract

PURPOSE

To establish and validate an optimal predictive model based on multiparametric MRI for staging liver fibrosis (LF) in rabbits with magnetic resonance elastography (MRE), spin-lattice relaxation time in the rotating frame (T1ρ imaging), SWI, intravoxel incoherent motion (IVIM), and DCE-MRI.

METHODS

The LF group included 120 rabbits induced by subcutaneous injections of carbon tetrachloride (CCl ); 30 normal rabbits served as the control group. Multiparametric MRI was performed, including MRE, T1ρ, SWI, IVIM, and DCE-MRI. The quantitative parameters were analyzed in two groups, with histopathological results serving as the reference standard. The diagnostic performance of multiparametric MRI and the predictive model established by multivariable logistic regression analysis were evaluated by receiver operating characteristic (ROC) curve analysis.

RESULTS

In total, 32, 67, and 51 rabbits were histologically diagnosed as no fibrosis (stage F0), early-stage LF (F1-F2), and advanced-stage LF (F3-F4), respectively. The LF stages presented a strong correlation with liver stiffness (LS) on MRE (r = 0.90), signal-intensity ratio (SIR) on SWI (r = -0.84), and K on DCE-MRI (r = 0.71; p < 0.05 for all). The LS and SIR parameters had higher AUC values for distinguishing early-stage LF from both no fibrosis (0.94 and 0.93, respectively) and advanced-stage LF (0.95 and 0.87, respectively). The predictive model showed a slightly higher AUC value of 0.97 (0.90-0.99) than LS and SIR in distinguishing early-stage LF from no fibrosis (p > 0.05), a significantly higher AUC value of 0.98 (0.93-0.99) than the SIR in distinguishing early-stage from advanced-stage LF (p < 0.05).

CONCLUSION

SWI, DCE-MRI, and MRE in particular showed improved performance for LF diagnosis and stage. The predictive model based on multiparametric MRI was found to further enhance diagnostic accuracy and could serve as an excellent imaging tool for staging LF.

摘要

目的

利用磁共振弹性成像(MRE)、旋转框架中的自旋晶格弛豫时间(T1ρ 成像)、SWI、体素内不相干运动(IVIM)和 DCE-MRI,建立并验证基于多参数 MRI 的肝纤维化(LF)分期预测模型。

方法

LF 组纳入 120 只通过皮下注射四氯化碳(CCl4)诱导的兔,30 只正常兔作为对照组。对两组进行多参数 MRI 检查,包括 MRE、T1ρ、SWI、IVIM 和 DCE-MRI。对定量参数进行分析,以组织病理学结果为参考标准。通过受试者工作特征(ROC)曲线分析,评估多参数 MRI 的诊断性能和多变量逻辑回归分析建立的预测模型。

结果

共 32、67 和 51 只兔经组织学诊断为无纤维化(F0 期)、早期 LF(F1-F2 期)和晚期 LF(F3-F4 期)。LF 分期与 MRE 上的肝硬度(LS)(r=0.90)、SWI 上的信号强度比(SIR)(r=-0.84)和 DCE-MRI 上的 K 值(r=0.71;p<0.05)呈强相关性。LS 和 SIR 参数在区分早期 LF 与无纤维化(0.94 和 0.93)和晚期 LF(0.95 和 0.87)方面具有较高的 AUC 值。预测模型在区分早期 LF 与无纤维化方面,其 AUC 值略高(0.97[0.90-0.99])(p>0.05),在区分早期 LF 与晚期 LF 方面,其 AUC 值显著更高(0.98[0.93-0.99])(p<0.05)。

结论

SWI、DCE-MRI 和 MRE 尤其在 LF 诊断和分期方面具有较好的性能。基于多参数 MRI 的预测模型进一步提高了诊断准确性,可作为 LF 分期的一种优秀影像学工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验