Symmetron Limited, 8 Devonshire Square, London, EC2M 4PL, UK.
Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Keck School of Medicine, University of Southern California, Los Angeles, USA.
Adv Ther. 2022 Feb;39(2):1045-1054. doi: 10.1007/s12325-021-02014-z. Epub 2021 Dec 27.
Among the various types of progressive fibrosing interstitial lung diseases (PF-ILDs), substantial survival data exist for idiopathic pulmonary fibrosis (IPF) but not for other types. This hinders evidence-based decisions about treatment and management, as well as the economic modelling needed to justify research into new treatments and reimbursement approvals. Given the clinical similarities between IPF and other PF-ILDs, we reasoned that patient survival data from four major IPF trials could be used to estimate long-term survival in other PF-ILDs.
We used propensity score matching to match patients with IPF taking either nintedanib or placebo in the TOMORROW, INPULSIS-1, INPULSIS-2 and INPULSIS-ON trials to patients with PF-ILDs other than IPF in the INBUILD trial. Seven models were fitted to the survival data for the matched patients with IPF, and the three best-fitting models were used to generate informative priors in a Bayesian framework to extrapolate patient survival of the INBUILD population.
After propensity score matching, the analysis included data from 1099 patients with IPF (640 nintedanib patients; 459 placebo patients) and 654 patients with other PF-ILDs (326 nintedanib patients; 328 placebo patients). Gamma, log-logistic and Weibull models best fit the survival of the matched patients with IPF. All three models led to consistent Bayesian estimates of survival for the matched patients with other PF-ILDs, with median rates of overall survival ranging from 6.34 to 6.50 years after starting nintedanib. The corresponding control group survival estimates were 3.42 to 3.76 years.
We provide the first estimates of long-term overall survival for patients with PF-ILDs other than IPF, and our analysis suggests that nintedanib may prolong their survival. Our Bayesian approach to estimating survival of one disease based on clinical trial data from a similar disease may help inform economic modelling of rare, orphan and newly defined disorders.
在各种进展性肺纤维化间质性肺疾病(PF-ILDs)中,特发性肺纤维化(IPF)有大量的生存数据,但其他类型则没有。这阻碍了基于证据的治疗和管理决策,也阻碍了新疗法研究和报销审批所需的经济建模。鉴于 IPF 和其他 PF-ILDs 之间的临床相似性,我们认为可以使用四项主要的 IPF 试验中的患者生存数据来估计其他 PF-ILDs 的长期生存情况。
我们使用倾向评分匹配,将接受尼达尼布或安慰剂治疗的 IPF 患者(TOMORROW、INPULSIS-1、INPULSIS-2 和 INPULSIS-ON 试验)与 INBUILD 试验中的非 IPF PF-ILD 患者相匹配。对匹配的 IPF 患者的生存数据拟合了七种模型,并在贝叶斯框架中使用三个最佳拟合模型生成信息先验,以推断 INBUILD 人群的患者生存情况。
在倾向评分匹配后,分析包括 1099 名 IPF 患者(640 名尼达尼布患者;459 名安慰剂患者)和 654 名其他 PF-ILD 患者(326 名尼达尼布患者;328 名安慰剂患者)的数据。伽马、对数逻辑和威布尔模型最适合匹配的 IPF 患者的生存情况。所有三种模型都导致了匹配的其他 PF-ILD 患者的一致贝叶斯生存估计,尼达尼布治疗后总体生存率中位数范围为 6.34 至 6.50 年。相应的对照组生存估计为 3.42 至 3.76 年。
我们首次提供了非 IPF 的 PF-ILD 患者的长期总体生存率估计,我们的分析表明尼达尼布可能延长他们的生存。我们基于类似疾病的临床试验数据估计一种疾病的生存情况的贝叶斯方法可能有助于为罕见、孤儿和新定义的疾病进行经济建模。