Suppr超能文献

分泌型免疫球蛋白 M 的生物发生需要中间的非天然二硫键,并涉及蛋白二硫键异构酶 ERp44。

Biogenesis of secretory immunoglobulin M requires intermediate non-native disulfide bonds and engagement of the protein disulfide isomerase ERp44.

机构信息

Division of Genetics and Cell Biology, Università Vita-Salute IRCCS Ospedale San Raffaele, Milano, Italy.

Vita-Salute San Raffaele University, Milan, Italy.

出版信息

EMBO J. 2022 Feb 1;41(3):e108518. doi: 10.15252/embj.2021108518. Epub 2021 Dec 27.

Abstract

Antibodies of the immunoglobulin M (IgM) class represent the frontline of humoral immune responses. They are secreted as planar polymers in which flanking µ L "monomeric" subunits are linked by two disulfide bonds, one formed by the penultimate cysteine (C575) in the tailpiece of secretory µ chains (µ tp) and the second by C414 in the Cµ3. The latter bond is not present in membrane IgM. Here, we show that C575 forms a non-native, intra-subunit disulfide bond as a key step in the biogenesis of secretory IgM. The abundance of this unexpected intermediate correlates with the onset and extent of polymerization. The rearrangement of the C-terminal tails into a native quaternary structure is guaranteed by the engagement of protein disulfide isomerase ERp44, which attacks the non-native C575 bonds. The resulting conformational changes promote polymerization and formation of C414 disulfide linkages. This unusual assembly pathway allows secretory polymers to form without the risk of disturbing the role of membrane IgM as part of the B cell antigen receptor.

摘要

免疫球蛋白 M (IgM) 类抗体代表了体液免疫反应的第一道防线。它们作为平面聚合物被分泌出来,侧翼的 μL“单体”亚基通过两条二硫键连接,一条由分泌 μ 链 (μ tp) 尾部的倒数第二个半胱氨酸 (C575) 形成,另一条由 Cµ3 中的 C414 形成。后一条键在膜 IgM 中不存在。在这里,我们表明 C575 形成了一个非天然的、亚基内的二硫键,这是分泌 IgM 生物发生的关键步骤。这种意外中间产物的丰度与聚合的开始和程度相关。通过结合蛋白二硫键异构酶 ERp44 来保证 C 末端尾部重排成天然的四级结构,该酶攻击非天然的 C575 键。由此产生的构象变化促进了聚合和 C414 二硫键的形成。这种不寻常的组装途径允许分泌聚合物形成,而不会有干扰膜 IgM 作为 B 细胞抗原受体一部分的风险。

相似文献

2
ERp44 and ERGIC-53 synergize in coupling efficiency and fidelity of IgM polymerization and secretion.
Traffic. 2010 May;11(5):651-9. doi: 10.1111/j.1600-0854.2010.01043.x.
3
A peptide extension dictates IgM assembly.
Proc Natl Acad Sci U S A. 2017 Oct 10;114(41):E8575-E8584. doi: 10.1073/pnas.1701797114. Epub 2017 Sep 27.
4
Sequential steps and checkpoints in the early exocytic compartment during secretory IgM biogenesis.
EMBO J. 2007 Oct 3;26(19):4177-88. doi: 10.1038/sj.emboj.7601844. Epub 2007 Sep 6.
6
Interplay of J chain and disulfide bonding in assembly of polymeric IgM.
Int Immunol. 1997 Aug;9(8):1149-58. doi: 10.1093/intimm/9.8.1149.
7
Missing links in antibody assembly control.
Int J Cell Biol. 2013;2013:606703. doi: 10.1155/2013/606703. Epub 2013 Dec 31.
8
The role of ERp44 in maturation of serotonin transporter protein.
J Biol Chem. 2012 May 18;287(21):17801-17811. doi: 10.1074/jbc.M112.345058. Epub 2012 Mar 26.
9
Proteostasis and "redoxtasis" in the secretory pathway: Tales of tails from ERp44 and immunoglobulins.
Free Radic Biol Med. 2015 Jun;83:323-30. doi: 10.1016/j.freeradbiomed.2015.02.020. Epub 2015 Mar 2.
10
Disulfide bond assignment in human J chain and its covalent pairing with immunoglobulin M.
Biochemistry. 1992 Dec 22;31(50):12643-7. doi: 10.1021/bi00165a014.

引用本文的文献

2
Understanding IgM Structure and Biology to Engineer New Antibody Therapeutics.
BioDrugs. 2025 May;39(3):347-357. doi: 10.1007/s40259-025-00720-6. Epub 2025 Apr 16.
3
DR5 disulfide bonding functions as a sensor and effector of protein folding stress.
Mol Cancer Res. 2024 Mar 19. doi: 10.1158/1541-7786.MCR-24-0756.
4
Redox regulation: mechanisms, biology and therapeutic targets in diseases.
Signal Transduct Target Ther. 2025 Mar 7;10(1):72. doi: 10.1038/s41392-024-02095-6.
5
Exquisite sensitivity of Polycystin-1 to HO concentration in the endoplasmic reticulum.
Redox Biol. 2025 Mar;80:103486. doi: 10.1016/j.redox.2024.103486. Epub 2024 Dec 31.
6
How J-chain ensures the assembly of immunoglobulin IgM pentamers.
EMBO J. 2025 Jan;44(2):505-533. doi: 10.1038/s44318-024-00317-9. Epub 2024 Dec 4.
10
Selective Secretion of KDEL-Bearing Proteins: Mechanisms and Functions.
Front Cell Dev Biol. 2022 Jul 13;10:967875. doi: 10.3389/fcell.2022.967875. eCollection 2022.

本文引用的文献

1
A virtuous cycle operated by ERp44 and ERGIC-53 guarantees proteostasis in the early secretory compartment.
iScience. 2021 Mar 1;24(3):102244. doi: 10.1016/j.isci.2021.102244. eCollection 2021 Mar 19.
2
The pivotal role of ERp44 in patrolling protein secretion.
J Cell Sci. 2020 Nov 10;133(21):jcs240366. doi: 10.1242/jcs.240366.
3
Structural insights into immunoglobulin M.
Science. 2020 Feb 28;367(6481):1014-1017. doi: 10.1126/science.aaz5425. Epub 2020 Feb 6.
4
Zinc regulates ERp44-dependent protein quality control in the early secretory pathway.
Nat Commun. 2019 Feb 5;10(1):603. doi: 10.1038/s41467-019-08429-1.
5
The IgM pentamer is an asymmetric pentagon with an open groove that binds the AIM protein.
Sci Adv. 2018 Oct 10;4(10):eaau1199. doi: 10.1126/sciadv.aau1199. eCollection 2018 Oct.
6
A peptide extension dictates IgM assembly.
Proc Natl Acad Sci U S A. 2017 Oct 10;114(41):E8575-E8584. doi: 10.1073/pnas.1701797114. Epub 2017 Sep 27.
7
Synthetic peptides designed to modulate adiponectin assembly improve obesity-related metabolic disorders.
Br J Pharmacol. 2017 Dec;174(23):4478-4492. doi: 10.1111/bph.14050. Epub 2017 Nov 2.
8
Structural basis of pH-dependent client binding by ERp44, a key regulator of protein secretion at the ER-Golgi interface.
Proc Natl Acad Sci U S A. 2017 Apr 18;114(16):E3224-E3232. doi: 10.1073/pnas.1621426114. Epub 2017 Apr 3.
10
Crystal Structure of the ERp44-Peroxiredoxin 4 Complex Reveals the Molecular Mechanisms of Thiol-Mediated Protein Retention.
Structure. 2016 Oct 4;24(10):1755-1765. doi: 10.1016/j.str.2016.08.002. Epub 2016 Sep 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验