CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, PO Box 416, Chengdu 610041, P. R. China.
University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China.
Tree Physiol. 2022 Jul 5;42(7):1396-1410. doi: 10.1093/treephys/tpab175.
Plant nitrogen (N) uptake is affected by plant-plant interactions, but the mechanisms remain unknown. A 15N-labeled technique was used in a pot experiment to analyze the uptake rate of ammonium (NH4+) and nitrate (NO3-) by Abies faxoniana Rehd. et Wils and Picea asperata Mast. in single-plant mode, intraspecific and interspecific interactions. The results indicated that the effects of plant-plant interactions on N uptake rate depended on plant species and N forms. Picea asperata had a higher N uptake rate of both N forms than A. faxoniana, and both species preferred NO3-. Compared with single-plant mode, intraspecific interaction increased NH4+ uptake for A. faxoniana but reduced that for P. asperata, while it did not change NO3- uptake for the two species. The interspecific interaction enhanced N uptake of both N forms for A. faxoniana but did not affect the P. asperata compared with single-plant mode. NH4+ and NO3- uptake rates for the two species were regulated by root N concentration, root nitrate reductase activity, root vigor, soil pH and soil N availability under plant-plant interactions. Decreased NH4+ uptake rate for P. asperata under intraspecific interaction was induced by lower root N concentration and nitrate reductase activity. The positive effects of interspecific interaction on N uptake for A. faxoniana could be determined mainly by positive rhizosphere effects, such as high soil pH. From the perspective of root-soil interactions, our study provides insight into how plant-plant interactions affect N uptake, which can help to understand species coexistence and biodiversity maintenance in forest ecosystems.
植物对氮(N)的吸收受到植物-植物相互作用的影响,但具体机制尚不清楚。本研究采用 15N 标记技术,在盆栽试验中分析了单株、种内和种间相互作用模式下,赤松(Abies faxoniana Rehd. et Wils)和黑云杉(Picea asperata Mast.)对铵(NH4+)和硝酸盐(NO3-)的吸收速率。结果表明,植物-植物相互作用对 N 吸收速率的影响取决于植物物种和 N 形态。与赤松相比,黑云杉对两种 N 形态的 N 吸收速率都更高,且两种树种均偏好吸收 NO3-。与单株模式相比,种内相互作用增加了赤松对 NH4+的吸收,但降低了黑云杉对 NH4+的吸收,而对两种树种吸收 NO3-没有影响。与单株模式相比,种间相互作用增强了赤松对两种 N 形态的 N 吸收,但对黑云杉没有影响。在植物-植物相互作用下,两种树种的 NH4+和 NO3-吸收速率受根系 N 浓度、根系硝酸还原酶活性、根系活力、土壤 pH 和土壤 N 有效性的调节。种内相互作用下,黑云杉对 NH4+吸收速率的降低是由较低的根系 N 浓度和硝酸还原酶活性引起的。种间相互作用对赤松 N 吸收的积极影响主要取决于正的根际效应,如较高的土壤 pH。从根-土相互作用的角度来看,本研究深入了解了植物-植物相互作用如何影响 N 吸收,这有助于理解森林生态系统中物种共存和生物多样性维持的机制。