Marchesi María Constanza, Galatius Anders, Zaffino Martina, Coscarella Mariano Alberto, González-José Rolando
Laboratorio de Mamíferos Marinos, Centro para el Estudio de los Sistemas Marinos (CESIMAR), CCT CONICET-CENPAT, Puerto Madryn, Argentina.
Section for Marine Mammal Research, Department of Ecoscience, Aarhus University, Roskilde, Denmark.
J Morphol. 2022 Mar;283(3):273-286. doi: 10.1002/jmor.21441. Epub 2022 Jan 4.
Vertebral morphology has profound biomechanical implications and plays an important role in adaptation to different habitats and foraging strategies for cetaceans. Extant porpoise species (Phocoenidae) display analogous evolutionary patterns in both hemispheres associated with convergent evolution to coastal versus oceanic environments. We employed 3D geometric morphometrics to study vertebral morphology in five porpoise species with contrasting habitats: the coastal Indo-Pacific finless porpoise (Neophocaena phocaenoides); the mostly coastal harbor porpoise (Phocoena phocoena) and Burmeister's porpoise (Phocoena spinipinnis); and the oceanic spectacled porpoise (Phocoena dioptrica) and Dall's porpoise (Phocoenoides dalli). We evaluated the radiation of vertebral morphology, both in size and shape, using multivariate statistics. We supplemented data with samples of an early-radiating delphinoid species, the narwhal (Monodon monoceros); and an early-radiating delphinid species, the white-beaked dolphin (Lagenorhynchus albirostris). Principal component analyses were used to map shape variation onto phylogenies, and phylogenetic constraints were investigated through permutation tests. We established links between vertebral morphology and movement patterns through biomechanical inferences from morphological presentations. We evidenced divergence in size between species with contrasting habitats, with coastal species tending to decrease in size from their estimated ancestral state, and oceanic species tending to increase in size. Regarding vertebral shape, coastal species had longer centra and shorter neural processes, but longer transverse processes, while oceanic species tended to have disk-shaped vertebrae with longer neural processes. Within Phocoenidae, the absence of phylogenetic constraints in vertebral morphology suggests a high level of evolutionary lability. Overall, our results are in accordance with the hypothesis of speciation within the family from a coastal ancestor, through adaptation to particular habitats. Variation in vertebral morphology in this group of small odontocetes highlights the importance of environmental complexity and particular selective pressures for the speciation process through the development of adaptations that minimize energetic costs during locomotion and prey capture.
脊椎形态具有深远的生物力学意义,在鲸类适应不同栖息地和觅食策略方面发挥着重要作用。现存的鼠海豚物种(鼠海豚科)在两个半球都表现出类似的进化模式,这与向沿海和海洋环境的趋同进化有关。我们采用三维几何形态测量学来研究五种栖息地不同的鼠海豚物种的脊椎形态:沿海的印太江豚(Neophocaena phocaenoides);主要生活在沿海的港湾鼠海豚(Phocoena phocoena)和南美鼠海豚(Phocoena spinipinnis);以及海洋性的眼镜鼠海豚(Phocoena dioptrica)和白腰鼠海豚(Phocoenoides dalli)。我们使用多变量统计评估了脊椎形态在大小和形状方面的辐射情况。我们用早期辐射的海豚科物种独角鲸(Monodon monoceros)和早期辐射的海豚属物种白喙斑纹海豚(Lagenorhynchus albirostris)的样本补充数据。主成分分析用于将形状变化映射到系统发育树上,并通过置换检验研究系统发育限制。我们通过从形态表现进行生物力学推断,建立了脊椎形态与运动模式之间的联系。我们证明了栖息地不同的物种在大小上存在差异,沿海物种相对于其估计的祖先状态往往体型减小,而海洋物种则倾向于体型增大。关于脊椎形状,沿海物种的椎体较长,神经突较短,但横突较长,而海洋物种的椎体往往呈圆盘状,神经突较长。在鼠海豚科中,脊椎形态不存在系统发育限制表明其进化可塑性较高。总体而言,我们的结果符合该科从沿海祖先通过适应特定栖息地而形成物种的假说。这组小型齿鲸的脊椎形态变化突出了环境复杂性和特定选择压力对于物种形成过程的重要性,这一过程通过发展适应性来最小化运动和捕食过程中的能量消耗。