Suppr超能文献

基于蛋白质结构能量的机器学习模型对单氨基酸变体的致病性预测

Pathogenicity Prediction of Single Amino Acid Variants With Machine Learning Model Based on Protein Structural Energies.

作者信息

Wu Tzu-Hsuan, Lin Peng-Chan, Chou Hsin-Hung, Shen Meng-Ru, Hsieh Sun-Yuan

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2023 Jan-Feb;20(1):606-615. doi: 10.1109/TCBB.2021.3139048. Epub 2023 Feb 3.

Abstract

The most popular tools for predicting pathogenicity of single amino acid variants (SAVs) were developed based on sequence-based techniques. SAVs may change protein structure and function. In the context of van der Waals force and disulfide bridge calculations, no method directly predicts the impact of mutations on the energies of the protein structure. Here, we combined machine learning methods and energy scores of protein structures calculated by Rosetta Energy Function 2015 to predict SAV pathogenicity. The accuracy level of our model (0.76) is higher than that of six prediction tools. Further analyses revealed that the differential reference energies, attractive energies, and solvation of polar atoms between wildtype and mutant side-chains played essential roles in distinguishing benign from pathogenic variants. These features indicated the physicochemical properties of amino acids, which were observed in 3D structures instead of sequences. We added 16 features to Rhapsody (the prediction tool we used for our data set) and consequently improved its performance. The results indicated that these energy scores were more appropriate and more detailed representations of the pathogenicity of SAVs.

摘要

用于预测单氨基酸变体(SAV)致病性的最流行工具是基于序列技术开发的。SAV可能会改变蛋白质的结构和功能。在范德华力和二硫键计算的背景下,没有方法能直接预测突变对蛋白质结构能量的影响。在此,我们将机器学习方法与通过Rosetta Energy Function 2015计算的蛋白质结构能量得分相结合,以预测SAV的致病性。我们模型的准确率水平(0.76)高于六种预测工具。进一步分析表明,野生型和突变型侧链之间的差异参考能量、吸引能量以及极性原子的溶剂化作用在区分良性变体和致病性变体方面起着至关重要的作用。这些特征表明了氨基酸的物理化学性质,它们是在三维结构而非序列中观察到的。我们在Rhapsody(我们用于数据集的预测工具)中添加了16个特征,从而提高了其性能。结果表明,这些能量得分是SAV致病性更合适、更详细的表征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验