Lee Choongheon, Sinha Anjali K, Henry Kenneth, Walbaum Anqi W, Crooks Peter A, Holt Joseph C
Department of Otolaryngology, University of Rochester, Rochester, NY, United States.
Department of Neuroscience, University of Rochester, Rochester, NY, United States.
Front Neurosci. 2021 Dec 14;15:754585. doi: 10.3389/fnins.2021.754585. eCollection 2021.
Stimulation of cholinergic efferent neurons innervating the inner ear has profound, well-characterized effects on vestibular and auditory physiology, after activating distinct ACh receptors (AChRs) on afferents and hair cells in peripheral endorgans. Efferent-mediated fast and slow excitation of vestibular afferents are mediated by α4β2*-containing nicotinic AChRs (nAChRs) and muscarinic AChRs (mAChRs), respectively. On the auditory side, efferent-mediated suppression of distortion product otoacoustic emissions (DPOAEs) is mediated by α9α10nAChRs. Previous characterization of these synaptic mechanisms utilized cholinergic drugs, that when systemically administered, also reach the CNS, which may limit their utility in probing efferent function without also considering central effects. Use of peripherally-acting cholinergic drugs with local application strategies may be useful, but this approach has remained relatively unexplored. Using multiple administration routes, we performed a combination of vestibular afferent and DPOAE recordings during efferent stimulation in mouse and turtle to determine whether charged mAChR or α9α10nAChR antagonists, with little CNS entry, can still engage efferent synaptic targets in the inner ear. The charged mAChR antagonists glycopyrrolate and methscopolamine blocked efferent-mediated slow excitation of mouse vestibular afferents following intraperitoneal, middle ear, or direct perilymphatic administration. Both mAChR antagonists were effective when delivered to the middle ear, contralateral to the side of afferent recordings, suggesting they gain vascular access after first entering the perilymphatic compartment. In contrast, charged α9α10nAChR antagonists blocked efferent-mediated suppression of DPOAEs only upon direct perilymphatic application, but failed to reach efferent synapses when systemically administered. These data show that efferent mechanisms are viable targets for further characterizing drug access in the inner ear.
刺激支配内耳的胆碱能传出神经元,在激活外周终器传入神经和毛细胞上不同的乙酰胆碱受体(AChRs)后,会对前庭和听觉生理产生深刻且特征明确的影响。传出神经介导的前庭传入神经的快速和慢速兴奋分别由含α4β2*的烟碱型AChRs(nAChRs)和毒蕈碱型AChRs(mAChRs)介导。在听觉方面,传出神经介导的畸变产物耳声发射(DPOAEs)抑制由α9α10 nAChRs介导。此前对这些突触机制的表征使用了胆碱能药物,当全身给药时,这些药物也会到达中枢神经系统(CNS),这可能会限制它们在不考虑中枢效应的情况下探测传出神经功能的效用。使用局部应用策略的外周作用胆碱能药物可能会有用,但这种方法仍相对未被探索。我们采用多种给药途径,在小鼠和海龟的传出神经刺激过程中进行了前庭传入神经记录和DPOAE记录的组合,以确定几乎不进入中枢神经系统的带电荷mAChR或α9α10 nAChR拮抗剂是否仍能作用于内耳的传出神经突触靶点。带电荷的mAChR拮抗剂格隆溴铵和甲基东莨菪碱在腹腔内、中耳或直接经外淋巴给药后,阻断了传出神经介导的小鼠前庭传入神经的慢速兴奋。当两种mAChR拮抗剂被递送至与传入神经记录侧相对的中耳时均有效,这表明它们在首先进入外淋巴腔室后获得了血管通路。相比之下,带电荷的α9α10 nAChR拮抗剂仅在直接经外淋巴应用时阻断了传出神经介导的DPOAEs抑制,但全身给药时未能到达传出神经突触。这些数据表明,传出神经机制是进一步表征内耳药物进入途径的可行靶点。