Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), GPlantS Unit, Av. da República, Oeiras 2780-157, Portugal.
Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent B-9052, Belgium.
Tree Physiol. 2022 Jun 9;42(6):1269-1285. doi: 10.1093/treephys/tpab176.
The longevity and high activity of the cork cambium (or phellogen) from Quercus suber L. (cork oak) are the cornerstones for the sustainable exploitation of a unique raw material. Cork oak is a symbolic model to study cork development and cell wall suberization, yet most genetic and molecular studies on these topics have targeted other model plants. In this study, we explored the potential of taproots as a model system to study phellem development and suberization in cork oak, thereby avoiding the time constraints imposed when studying whole plants. In roots, suberin deposition is found in mature endodermis cells during primary development and in phellem cells during secondary development. By investigating the spatiotemporal characteristics of both endodermis and phellem suberization in young seedling taproots, we demonstrated that secondary growth and phellogen activity are initiated very early in cork oak taproots (approx. 8 days after sowing). We further compared the transcriptomic profile of root segments undergoing primary (PD) and secondary development (SD) and identified multiple candidate genes with predicted roles in cell wall modifications, mainly lignification and suberization, in addition to several regulatory genes, particularly transcription factor- and hormone-related genes. Our results indicate that the molecular regulation of suberization and secondary development in cork oak roots is relatively conserved with other species. The provided morphological characterization creates new opportunities to allow a faster assessment of phellogen activity (as compared with studies using stem tissues) and to tackle fundamental questions regarding its regulation.
软木形成层(或栓内层)的长寿和高活性是可持续利用独特原料的基石。栓皮栎是研究软木发育和细胞壁栓化的典型模式植物,但大多数关于这些主题的遗传和分子研究都针对其他模式植物。在这项研究中,我们探索了主根作为研究栓皮栎栓内层发育和栓化的模型系统的潜力,从而避免了研究整个植物时所受到的时间限制。在根中,在初生发育过程中,在成熟内皮层细胞中沉积了栓质,在次生发育过程中,在栓内层细胞中沉积了栓质。通过研究幼龄苗主根中内皮层和栓内层栓化的时空特征,我们证明了栓皮栎主根中的次生生长和栓形成层活性很早就开始了(播种后约 8 天)。我们进一步比较了经历初生(PD)和次生发育(SD)的根段的转录组特征,并鉴定了多个候选基因,这些基因预测在细胞壁修饰中具有作用,主要涉及木质化和栓化,此外还有几个调节基因,特别是与转录因子和激素相关的基因。我们的研究结果表明,栓皮栎根中栓化和次生发育的分子调控与其他物种相对保守。提供的形态特征为评估栓形成层活性提供了新的机会(与使用茎组织的研究相比),并解决了关于其调控的基本问题。