College of Biology Pharmacy and Food Engineering, Shangluo University, Shangluo, 726000, PR China; Shaanxi Qinling Industrial Technology Research Institute of Special Biological Resources, Shangluo Technology & Research Institute of Chinese Medicinal Materials Integrated Pest Management, Shangluo, 726000, PR China.
College of Biology Pharmacy and Food Engineering, Shangluo University, Shangluo, 726000, PR China.
Chemosphere. 2022 Apr;292:133430. doi: 10.1016/j.chemosphere.2021.133430. Epub 2021 Dec 28.
Development of low-cost, nontoxic, highly efficient performance photocatalyst for water pollution control engineering is critical for environmental remediation. In this contribution, a direct Z-scheme heterojunction based on C quantum dot (CQDs), bismuth oxybromide (BiOBr) and bulk graphitic carbon nitride (g-CN, CN) (CQDs-BiOBr/CN composite) with outstanding photocatalytic activity and good reusability is successfully fabricated though a hydrothermal procedure for cefixime antibiotic photodegradation. In particular, the CQDs-BiOBr/CN composite possess the best cefixime degradation effect, the degradation rate is about 92.82% within 120 min. The enhancement photocatalytic activity of CQDs-BiOBr/CN can be ascribed to the improved light-harvest ability, the excellent adsorption performance, the efficient charge transportation and separation capability. A possible degradation pathway of cefixime is proposed base on HPLC-MS. Toxicity experiments demonstrate that the antibiotic activity of cefixime is effectively deactivated after degradation process, and which is no toxic effect for Rye seeds in deionized water. The CQDs-BiOBr/CN also displays the excellent photoactivation activity towards Escherichia coli (E. coli). Reactive-species-trapping experiments show that hydroxyl radical (⋅OH) and superoxide radical (⋅O) are the active reactive species in the photodegradation process. The CQDs-BiOBr/CN composite demonstrate an effective potential practical application in antibiotic pollutants degradation from wastewater.
开发用于水污染控制工程的低成本、无毒、高效性能光催化剂对于环境修复至关重要。在本研究中,通过水热法成功制备了基于 C 量子点 (CQDs)、溴氧化铋 (BiOBr) 和块状石墨相氮化碳 (g-CN,CN) 的直接 Z 型异质结 CQDs-BiOBr/CN 复合材料,具有出色的光催化活性和良好的可重复使用性,可用于头孢克肟抗生素的光降解。特别是,CQDs-BiOBr/CN 复合材料具有最佳的头孢克肟降解效果,在 120 分钟内降解率约为 92.82%。CQDs-BiOBr/CN 的增强光催化活性可归因于提高的光捕获能力、优异的吸附性能、高效的电荷传输和分离能力。根据 HPLC-MS 提出了头孢克肟的可能降解途径。毒性实验表明,头孢克肟的抗生素活性在降解过程中被有效失活,并且在去离子水中对黑麦种子没有毒性影响。CQDs-BiOBr/CN 对大肠杆菌 (E. coli) 也表现出优异的光激活活性。自由基捕获实验表明,在光降解过程中,羟基自由基 (⋅OH) 和超氧自由基 (⋅O) 是活性自由基。CQDs-BiOBr/CN 复合材料在抗生素污染物的废水降解方面具有有效的潜在实际应用。