Alvarez Fernando, Arbe Arantxa, Colmenero Juan
Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain.
J Chem Phys. 2021 Dec 28;155(24):244509. doi: 10.1063/5.0074588.
We present an investigation by molecular dynamics (MD)-simulations of the coherent dynamic structure factor, S(Q, t) (Q: momentum transfer), of liquid water at the mesoscale (0.1 Å ≤ Q ≤ Q) [Q ≈ 2 Å: Q-value of the first maximum of the static structure factor, S(Q), of water]. The simulation cell-large enough to address the collective properties at the mesoscale-is validated by direct comparison with recent results on the dynamic structure factor in the frequency domain obtained by neutron spectroscopy with polarization analysis [Arbe et al., Phys. Rev. Res. 2, 022015 (2020)]. We have not only focused on the acoustic excitations but also on the relaxational contributions to S(Q, t). The analysis of the MD-simulation results-including the self- and distinct contributions to the diffusive part of S(Q, t)-nicely explains why the relaxation process hardly depends on Q in the low Q-range (Q ≤ 0.4 Å) and how it crosses over to a diffusion-driven process at Q ≈ Q. Our simulations also give support to the main assumptions of the model used to fit the experimental data in the above mentioned paper. The application of such a model to the simulation S(Q, t) data delivers (i) results for the relaxation component of S(Q, t) in agreement with those obtained from neutron experiments and (ii) longitudinal and transverse hydrodynamic-like components with similar features than those identified in previous simulations of the longitudinal and transverse current spectra directly. On the other hand, in general, our MD-simulations results of S(Q, t) qualitatively agree with the viscoelastic transition framework habitually used to describe inelastic x-ray scattering results.
我们通过分子动力学(MD)模拟研究了中尺度(0.1 Å ≤ Q ≤ Q)[Q ≈ 2 Å:水的静态结构因子S(Q)的第一个最大值的Q值]下液态水的相干动态结构因子S(Q, t)(Q:动量转移)。模拟单元足够大以解决中尺度下的集体性质,通过与最近利用极化分析的中子光谱法在频域中获得的动态结构因子的结果进行直接比较来验证[Arbe等人,《物理评论研究》2, 022015 (2020)]。我们不仅关注声学激发,还关注对S(Q, t)的弛豫贡献。对MD模拟结果的分析——包括对S(Q, t)扩散部分的自贡献和不同贡献——很好地解释了为什么在低Q范围(Q ≤ 0.4 Å)弛豫过程几乎不依赖于Q,以及它如何在Q ≈ Q时转变为扩散驱动过程。我们的模拟还支持了上述论文中用于拟合实验数据的模型的主要假设。将这样一个模型应用于模拟S(Q, t)数据得到:(i)S(Q, t)弛豫分量的结果与从中子实验获得的结果一致;(ii)纵向和横向类似流体动力学的分量,其特征与先前直接对纵向和横向电流谱进行模拟时所识别的类似。另一方面,一般来说,我们对S(Q, t)的MD模拟结果在定性上与习惯用于描述非弹性x射线散射结果的粘弹性转变框架一致。