School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry of MOE, Shandong University, Jinan, 250100, P. R. China.
Angew Chem Int Ed Engl. 2022 Mar 1;61(10):e202117406. doi: 10.1002/anie.202117406. Epub 2022 Jan 17.
Nanoscale curvature-dependent interactions are of paramount importance in biological systems. Here, we report that nanoscale curvature plays an important role in regulating the chirality of self-assembled nanocomposites from chiral organic molecules and achiral nanoparticles. Specifically, we show that the supramolecular chirality of the nanocomposites markedly depends on the nanoparticle curvature, where small-sized nanoparticles of high curvature and large-sized nanoparticles of low curvature lead to nanocomposites with opposite chirality. Quantitative kinetic experiments and molecular dynamics simulations reveal that nanoparticle curvature plays a key role in promoting the pre-nucleation oligomerization of chiral molecules, which consequently regulates the supramolecular chirality of the nanocomposites. We anticipate that this study will aid in rational design of an artificial cooperative system giving rise to emergent assembling phenomena that can be surprisingly rich and often cannot be understood by studying the conventional noncooperative systems.
纳米级曲率相关相互作用在生物系统中至关重要。在这里,我们报告称,纳米级曲率在调节手性有机分子和非手性纳米粒子自组装纳米复合材料的手性方面起着重要作用。具体而言,我们表明,纳米复合材料的超分子手性明显取决于纳米粒子的曲率,其中高曲率的小尺寸纳米粒子和低曲率的大尺寸纳米粒子导致具有相反手性的纳米复合材料。定量动力学实验和分子动力学模拟表明,纳米粒子曲率在手性分子的预成核寡聚化中起着关键作用,进而调节纳米复合材料的超分子手性。我们预计,这项研究将有助于合理设计人工协作系统,产生新兴的组装现象,这些现象可能非常丰富,并且通过研究传统的非协作系统往往无法理解。