Liu Yizhou, Zou Nianlong, Zhao Sibo, Chen Xiaobin, Xu Yong, Duan Wenhui
State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China.
Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel.
Nano Lett. 2022 Mar 9;22(5):2120-2126. doi: 10.1021/acs.nanolett.1c04299. Epub 2022 Jan 4.
Research on topological physics of phonons has attracted enormous interest but demands appropriate model materials. Our ab initio calculations identify silicon as an ideal candidate material containing extraordinarily rich topological phonon states. In silicon, we identify various topological nodal lines characterized by quantized Berry phase π, which gives drumhead surface states observable from any surface orientations. Remarkably, a novel type of topological nexus phonon is discovered which is featured by double Fermi-arc-like surface states but requires neither inversion nor time-reversal symmetry breaking. Versatile topological states can be created from the nexus phonons, such as Hopf nodal links by strain. Furthermore, we generalize the symmetry analysis to other centrosymmetric systems and find numerous candidate materials, demonstrating the ubiquitous existence of topological phonons in solids. These findings open up new opportunities for studying topological phonons in realistic materials and their influence on surface physics.
声子拓扑物理的研究引起了极大的兴趣,但需要合适的模型材料。我们的第一性原理计算表明,硅是一种理想的候选材料,它包含极其丰富的拓扑声子态。在硅中,我们识别出各种以量子化贝里相位π为特征的拓扑节线,这会产生从任何表面取向都可观测到的鼓面表面态。值得注意的是,我们发现了一种新型的拓扑连接声子,其特征是具有双费米弧状表面态,但既不需要空间反演对称性破缺,也不需要时间反演对称性破缺。可以从连接声子创建多种拓扑态,例如通过应变产生的霍普夫节线链。此外,我们将对称性分析推广到其他中心对称系统,并发现了许多候选材料,这表明拓扑声子在固体中普遍存在。这些发现为研究实际材料中的拓扑声子及其对表面物理的影响开辟了新的机会。