文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

呼吸性碱中毒可引发易发生癫痫的大鼠出现棘波放电。

Respiratory alkalosis provokes spike-wave discharges in seizure-prone rats.

机构信息

Department of Pharmacology, University of Virginia, Charlottesville, United States.

Neuroscience Graduate Program, University of Virginia, Charlottesville, United States.

出版信息

Elife. 2022 Jan 4;11:e72898. doi: 10.7554/eLife.72898.


DOI:10.7554/eLife.72898
PMID:34982032
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8860449/
Abstract

Hyperventilation reliably provokes seizures in patients diagnosed with absence epilepsy. Despite this predictable patient response, the mechanisms that enable hyperventilation to powerfully activate absence seizure-generating circuits remain entirely unknown. By utilizing gas exchange manipulations and optogenetics in the WAG/Rij rat, an established rodent model of absence epilepsy, we demonstrate that absence seizures are highly sensitive to arterial carbon dioxide, suggesting that seizure-generating circuits are sensitive to pH. Moreover, hyperventilation consistently activated neurons within the intralaminar nuclei of the thalamus, a structure implicated in seizure generation. We show that intralaminar thalamus also contains pH-sensitive neurons. Collectively, these observations suggest that hyperventilation activates pH-sensitive neurons of the intralaminar nuclei to provoke absence seizures.

摘要

过度通气能可靠地诱发诊断为失神性癫痫的患者出现癫痫发作。尽管患者对此有可预测的反应,但仍完全不清楚是什么机制使过度通气能强有力地激活引起失神发作的回路。通过在 WAG/Rij 大鼠(一种已建立的失神性癫痫的啮齿动物模型)中利用气体交换操作和光遗传学,我们证明失神发作对动脉二氧化碳非常敏感,这表明引起癫痫发作的回路对 pH 值敏感。此外,过度通气一致地激活了丘脑内板核内的神经元,而内板核被认为与癫痫发作有关。我们发现内板核内也存在 pH 值敏感的神经元。总的来说,这些观察结果表明,过度通气激活了内板核内的 pH 值敏感神经元,从而引发失神发作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0178/8860449/cbf149880a3b/elife-72898-sa2-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0178/8860449/3c4bc79c5fda/elife-72898-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0178/8860449/735f138f5808/elife-72898-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0178/8860449/a20bc8ae3df8/elife-72898-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0178/8860449/bf1e9b1d2509/elife-72898-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0178/8860449/5cc8ad4dacf7/elife-72898-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0178/8860449/0dbb18922bc4/elife-72898-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0178/8860449/be17a8eade0f/elife-72898-fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0178/8860449/22f831911954/elife-72898-sa2-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0178/8860449/cbf149880a3b/elife-72898-sa2-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0178/8860449/3c4bc79c5fda/elife-72898-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0178/8860449/735f138f5808/elife-72898-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0178/8860449/a20bc8ae3df8/elife-72898-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0178/8860449/bf1e9b1d2509/elife-72898-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0178/8860449/5cc8ad4dacf7/elife-72898-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0178/8860449/0dbb18922bc4/elife-72898-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0178/8860449/be17a8eade0f/elife-72898-fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0178/8860449/22f831911954/elife-72898-sa2-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0178/8860449/cbf149880a3b/elife-72898-sa2-fig2.jpg

相似文献

[1]
Respiratory alkalosis provokes spike-wave discharges in seizure-prone rats.

Elife. 2022-1-4

[2]
Seizure-related activity of intralaminar thalamic neurons in a genetic model of absence epilepsy.

Neurobiol Dis. 2011-3-31

[3]
Contribution of intralaminar thalamic nuclei to spike-and-wave-discharges during spontaneous seizures in a genetic rat model of absence epilepsy.

Eur J Neurosci. 2001-4

[4]
Abnormalities in GABAergic synaptic transmission of intralaminar thalamic neurons in a genetic rat model of absence epilepsy.

Mol Cell Neurosci. 2010-11-26

[5]
Genetic animal models for absence epilepsy: a review of the WAG/Rij strain of rats.

Behav Genet. 2003-11

[6]
Spike-wave discharges in adult Sprague-Dawley rats and their implications for animal models of temporal lobe epilepsy.

Epilepsy Behav. 2014-2-15

[7]
Genetic models of absence epilepsy, with emphasis on the WAG/Rij strain of rats.

Epilepsy Res. 1992-7

[8]
Protective role for type-1 metabotropic glutamate receptors against spike and wave discharges in the WAG/Rij rat model of absence epilepsy.

Neuropharmacology. 2011-1-26

[9]
The Modulatory Effect of Metabotropic Glutamate Receptor Type-1α on Spike-Wave Discharges in WAG/Rij Rats.

Mol Neurobiol. 2017-3

[10]
Reduction of epileptic spike-wave activity in WAG/Rij rats fostered by Wistar dams.

Brain Res. 2015-1-12

引用本文的文献

[1]
Targeting microRNA-dependent control of X chromosome inactivation improves the Rett Syndrome phenotype.

Nat Commun. 2025-7-4

[2]
The respiratory cycle modulates distinct dynamics of affective and perceptual decision-making.

PLoS Comput Biol. 2025-5-27

[3]
and exploration of physostigmine analogues to understand the mechanistic crosstalk between Klotho and targets for epilepsy.

Front Pharmacol. 2025-4-25

[4]
Respiratory modulations of cortical excitability and interictal spike timing in focal epilepsy: a case report.

Commun Med (Lond). 2025-4-10

[5]
Low-Frequency Stimulation at the Ventromedial Hypothalamus Exhibits Broad-Spectrum Efficacy Across Models of Epilepsy.

CNS Neurosci Ther. 2025-2

[6]
Heartbeat-evoked potentials following voluntary hyperventilation in epilepsy patients: respiratory influences on cardiac interoception.

Front Neurosci. 2024-7-5

[7]
Attenuating midline thalamus bursting to mitigate absence epilepsy.

Proc Natl Acad Sci U S A. 2024-7-9

[8]
Adrenergic mechanisms of absence status epilepticus.

Front Neurol. 2023-11-22

[9]
Respiratory brain impulse propagation in focal epilepsy.

Sci Rep. 2023-3-30

[10]
Thalamocortical circuits in generalized epilepsy: Pathophysiologic mechanisms and therapeutic targets.

Neurobiol Dis. 2023-6-1

本文引用的文献

[1]
Occurrence of hyperventilation-induced high amplitude rhythmic slowing with altered awareness after successful treatment of typical absence seizures and a network hypothesis.

Clin Neurophysiol Pract. 2021-6-11

[2]
The circadian dynamics of the hippocampal transcriptome and proteome is altered in experimental temporal lobe epilepsy.

Sci Adv. 2020-10

[3]
Differential Contribution of the Retrotrapezoid Nucleus and C1 Neurons to Active Expiration and Arousal in Rats.

J Neurosci. 2020-11-4

[4]
Seizure forecasting and cyclic control of seizures.

Epilepsia. 2021-2

[5]
Circadian Rhythms and Epilepsy: A Suitable Case for Absence Epilepsy.

Front Neurol. 2020-4-28

[6]
Contribution of the Retrotrapezoid Nucleus and Carotid Bodies to Hypercapnia- and Hypoxia-induced Arousal from Sleep.

J Neurosci. 2019-10-22

[7]
The Retrotrapezoid Nucleus: Central Chemoreceptor and Regulator of Breathing Automaticity.

Trends Neurosci. 2019-10-18

[8]
Dealing with the storm: An overview of seizure precipitants and spontaneous seizure worsening in drug-resistant epilepsy.

Epilepsy Behav. 2019-6-26

[9]
The network organization of rat intrathalamic macroconnections and a comparison with other forebrain divisions.

Proc Natl Acad Sci U S A. 2019-6-18

[10]
De novo SCN1A, SCN8A, and CLCN2 mutations in childhood absence epilepsy.

Epilepsy Res. 2019-4-22

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索