School of Biological Sciences, Washington State University, Pullman, WA 99154.
Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany.
Proc Natl Acad Sci U S A. 2022 Jan 4;119(1). doi: 10.1073/pnas.2112755119.
Symplasmicly connected cells called sieve elements form a network of tubes in the phloem of vascular plants. Sieve elements have essential functions as they provide routes for photoassimilate distribution, the exchange of developmental signals, and the coordination of defense responses. Nonetheless, they are the least understood main type of plant cells. They are extremely sensitive, possess a reduced endomembrane system without Golgi apparatus, and lack nuclei and translation machineries, so that transcriptomics and similar techniques cannot be applied. Moreover, the analysis of phloem exudates as a proxy for sieve element composition is marred by methodological problems. We developed a simple protocol for the isolation of sieve elements from leaves and stems of at sufficient amounts for large-scale proteome analysis. By quantifying the enrichment of individual proteins in purified sieve element relative to bulk phloem preparations, proteins of increased likelyhood to function specifically in sieve elements were identified. To evaluate the validity of this approach, yellow fluorescent protein constructs of genes encoding three of the candidate proteins were expressed in plants. Tagged proteins occurred exclusively in sieve elements. Two of them, a putative cytochrome b561/ferric reductase and a reticulon-like protein, appeared restricted to segments of the endoplasmic reticulum (ER) that were inaccessible to green fluorescent protein dissolved in the ER lumen, suggesting a previously unknown differentiation of the endomembrane system in sieve elements. Evidently, our list of promising candidate proteins ( ) provides a valuable exploratory tool for sieve element biology.
在维管植物的韧皮部中,称为筛分子的胞质相连细胞形成了一个管状网络。筛分子具有重要的功能,因为它们提供了光合产物分配、发育信号交换和防御反应协调的途径。尽管如此,它们是最不被理解的主要类型的植物细胞。它们非常敏感,具有没有高尔基体的简化内质网系统,并且缺乏核和翻译机制,因此不能应用转录组学和类似的技术。此外,作为筛分子组成的替代物的韧皮部渗出物的分析受到方法学问题的困扰。我们开发了一种从叶片和茎中分离筛分子的简单方案,足以进行大规模的蛋白质组分析。通过定量分析纯化的筛分子中单个蛋白质相对于大量韧皮部制剂的富集程度,鉴定出更有可能特异性地在筛分子中发挥作用的蛋白质。为了评估这种方法的有效性,我们在植物中表达了编码三个候选蛋白的基因的黄色荧光蛋白构建体。标记蛋白仅出现在筛分子中。其中两种,一种假定的细胞色素 b561/铁还原酶和一种网蛋白样蛋白,似乎仅限于内质网 (ER) 的不可溶的绿色荧光蛋白溶解在 ER 腔中的片段,这表明 ER 中内质网系统的分化以前是未知的。显然,我们的候选蛋白列表()为筛分子生物学提供了一种有价值的探索性工具。