Suppr超能文献

超声微流控芯片增强空化效应实现快速 DNA 片段化。

Bubble-enhanced ultrasonic microfluidic chip for rapid DNA fragmentation.

机构信息

Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Switzerland.

Department of Fluid Control and Automation, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150000, P. R. China.

出版信息

Lab Chip. 2022 Feb 1;22(3):560-572. doi: 10.1039/d1lc00933h.

Abstract

DNA fragmentation is an essential process in developing genetic sequencing strategies, genetic research, as well as for the diagnosis of diseases with a genetic signature like cancer. Efficient on-chip DNA fragmentation protocols would be beneficial to process integration and open new opportunities for microfluidics in genetic applications. Here we present an acoustic microfluidic chip comprising an array of ultrasound-actuated microbubbles located at dedicated positions adjacent to a channel containing the DNA sample solution. The efficiency of the on-chip DNA fragmentation process arises mainly from tensile forces generated by acoustic streaming near the oscillating bubble interfaces, as well as a synergistic effect of streaming stress and ultrasonic cavitation. Acoustic microstreaming and the pressure distribution in the DNA channel were assessed by finite element simulation. We characterized the bubble-enhanced effect by measuring gene fragment size distributions with respect to different ultrasound parameters. For optimized on-chip conditions, purified lambda (λ) DNA (48.5 kbp) could be disrupted to fragments with an average size of 2 kbp after 30 s and down to 300 bp after 90 s. Mouse genomic DNA (1.4 kbp) fragmentation size decreased to 500 bp in 30 s and reduced further to 250 bp in 90 s. Bubble-induced fragmentation was more than 3 times faster than without bubbles. On-chip performance and process yield were found to be comparable to a sophisticated high-end commercial system. In this view, our new bubble-enhanced microfluidic approach is a promising tool for current and next generation sequencing platforms with high efficiency and good capacity. Moreover, the availability of an efficient on-chip DNA fragmentation process opens perspectives for implementing full molecular protocols on a single microfluidic platform.

摘要

DNA 碎片化是开发基因测序策略、基因研究以及诊断具有遗传特征的疾病(如癌症)的重要过程。高效的片上 DNA 碎片化方案将有利于处理集成,并为微流控技术在基因应用中开辟新的机会。在这里,我们提出了一种包含位于与包含 DNA 样品溶液的通道相邻的专用位置的阵列超声驱动微泡的声学微流控芯片。片上 DNA 碎片化过程的效率主要来自于近振动脉泡界面处的声流产生的拉伸力,以及流应力和超声空化的协同效应。通过有限元模拟评估了声微流和 DNA 通道中的压力分布。我们通过测量不同超声参数下的基因片段大小分布来表征气泡增强效应。对于优化的片上条件,经过 30 秒后,可将纯化的 λ(λ)DNA(48.5 kbp)断裂成平均大小为 2 kbp 的片段,经过 90 秒后,可断裂成 300 bp 的片段。30 秒内,小鼠基因组 DNA(1.4 kbp)的片段大小减小到 500 bp,90 秒后进一步减小到 250 bp。气泡诱导的碎片化速度比没有气泡时快 3 倍以上。片上性能和处理产量与复杂的高端商业系统相当。在这种情况下,我们的新气泡增强微流控方法是一种有前途的工具,适用于具有高效率和良好容量的当前和下一代测序平台。此外,高效的片上 DNA 碎片化过程的实现为在单个微流控平台上实施全分子方案开辟了前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验