Sakr N I, Kizilkaya Orhan, Carlson Sierra F, Chan Simon, Oumnov Reuben A, Catano Jaqueline, Kurtz Richard L, Hall Randall W, Poliakoff E D, Sprunger Phillip T
Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, United States.
Center for Advanced Microstructures and Devices, Louisiana State University, Baton Rouge, Louisiana 70806, United States.
J Phys Chem C Nanomater Interfaces. 2021 Oct 14;125(40):21882-21890. doi: 10.1021/acs.jpcc.1c04298. Epub 2021 Oct 4.
Environmentally persistent free radicals (EPFRs) are a class of toxic air pollutants that are found to form by the chemisorption of substituted aromatic molecules on the surface of metal oxides. In this study, we employ X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS) to perform a temperature-dependent study of phenol adsorption on -FeO(0001) to probe the radical formation mechanism by monitoring changes in the electronic structure of both the adsorbed phenol and metal oxide substrate. Upon dosing at room temperature, new phenol-derived electronic states have been clearly observed in the UPS spectrum at saturation coverage. However, upon dosing at high temperature (>200 °C), both photoemission techniques have shown distinctive features that strongly suggest electron transfer from adsorbed phenol to FeO surface atoms and consequent formation of a surface radical. Consistent with the experiment, DFT calculations show that phenoxyl adsorption on the iron oxide surface at RT leads to a minor charge transfer to the adsorbed molecule. The experimental findings at high temperatures agree well with the EPFRs' proposed formation mechanism and can guide future experimental and computational studies.
环境持久性自由基(EPFRs)是一类有毒空气污染物,已发现其通过取代芳烃分子在金属氧化物表面的化学吸附形成。在本研究中,我们采用X射线光电子能谱(XPS)和紫外光电子能谱(UPS)对苯酚在-FeO(0001)上的吸附进行温度依赖性研究,通过监测吸附苯酚和金属氧化物基底电子结构的变化来探究自由基形成机制。在室温下进样时,在UPS谱图中饱和覆盖度下清晰观察到了新的苯酚衍生电子态。然而,在高温(>200°C)进样时,两种光发射技术均显示出独特特征,强烈表明电子从吸附的苯酚转移到FeO表面原子并随之形成表面自由基。与实验一致,密度泛函理论(DFT)计算表明,室温下苯氧基在氧化铁表面的吸附导致向吸附分子的少量电荷转移。高温下的实验结果与EPFRs的提出的形成机制非常吻合,并可为未来的实验和计算研究提供指导。