I 型折叠校正物纠正 CFTR 的机制。

Mechanism of CFTR correction by type I folding correctors.

机构信息

Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065, USA.

Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.

出版信息

Cell. 2022 Jan 6;185(1):158-168.e11. doi: 10.1016/j.cell.2021.12.009.

Abstract

Small molecule chaperones have been exploited as therapeutics for the hundreds of diseases caused by protein misfolding. The most successful examples are the CFTR correctors, which transformed cystic fibrosis therapy. These molecules revert folding defects of the ΔF508 mutant and are widely used to treat patients. To investigate the molecular mechanism of their action, we determined cryo-electron microscopy structures of CFTR in complex with the FDA-approved correctors lumacaftor or tezacaftor. Both drugs insert into a hydrophobic pocket in the first transmembrane domain (TMD1), linking together four helices that are thermodynamically unstable. Mutating residues at the binding site rendered ΔF508-CFTR insensitive to lumacaftor and tezacaftor, underscoring the functional significance of the structural discovery. These results support a mechanism in which the correctors stabilize TMD1 at an early stage of biogenesis, prevent its premature degradation, and thereby allosterically rescuing many disease-causing mutations.

摘要

小分子伴侣已被开发为治疗数百种由蛋白质错误折叠引起的疾病的药物。最成功的例子是 CFTR 校正剂,它改变了囊性纤维化的治疗方法。这些分子纠正了 ΔF508 突变体的折叠缺陷,并被广泛用于治疗患者。为了研究它们作用的分子机制,我们确定了 CFTR 与 FDA 批准的校正剂 lumacaftor 或 tezacaftor 复合物的低温电子显微镜结构。这两种药物都插入到第一个跨膜域(TMD1)的疏水性口袋中,连接在一起四个热力学不稳定的螺旋。结合部位的突变残基使 ΔF508-CFTR 对 lumacaftor 和 tezacaftor 不敏感,突出了这一结构发现的功能意义。这些结果支持这样一种机制,即校正剂在生物发生的早期稳定 TMD1,防止其过早降解,从而变构挽救许多致病突变。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索