Chamack Masoumeh, Ifires Madjid, Akbar Razavi Sayed Ali, Morsali Ali, Addad Ahmed, Larimi Afsanehsadat, Szunerits Sabine, Boukherroub Rabah
Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran 14117-13116, Islamic Republic of Iran.
Universityof Lille, CNRS, Centrale Lille, Université Polytechnique Hauts-de-France, UMR 8520, IEMN, Lille F-59000, France.
Inorg Chem. 2022 Jan 24;61(3):1735-1744. doi: 10.1021/acs.inorgchem.1c03622. Epub 2022 Jan 10.
The orthorhombic phase of KNbO perovskite has been applied for nitrogen (N) photoreduction to ammonia (NH). However, this material suffers from a low surface area and low ammonia production efficiency under UV light irradiation. To eliminate these barriers, we used a metal-organic framework (MOF), named as TMU-5 ([Zn(OBA)(BPDH)]·1.5DMF, where HOBA = 4,4'-oxybis(benzoic acid) and BPDH = 2,5-bis(4-pyridyl)-3,4-diaza-2,4-hexadiene), for the synthesis of the KNbO@TMU-5 hybrid material. KNbO@TMU-5 achieved a NH production rate of 39.9 μmol·L·h·g upon UV light irradiation, as compared to 20.5 μmol·L·h·g recorded for KNbO under similar experimental conditions. Using different characterization techniques especially gas adsorption, cyclic voltammetry, X-ray photoelectron spectroscopy, photocurrent measurements, and Fourier transform infrared spectroscopy, it has been found that the higher photoactivity of KNbO@TMU-5 in ammonia production is due to its higher surface area, higher electron-hole separation efficiency, and higher density of negative charges on Nb sites. This work shows that hybridization of conventional semiconductors (SCs) with photoactive MOFs can improve the photoactivity of the SC@MOF hybrid material in different reactions, especially kinetically complex reactions like photoconversion of nitrogen to ammonia.
铌酸钾钙钛矿的正交相已被用于将氮(N)光还原为氨(NH₃)。然而,这种材料在紫外光照射下存在比表面积低和氨生产效率低的问题。为了消除这些障碍,我们使用了一种名为TMU-5([Zn(OBA)(BPDH)]·1.5DMF,其中HOBA = 4,4'-氧代双(苯甲酸),BPDH = 2,5-双(4-吡啶基)-3,4-二氮杂-2,4-己二烯)的金属有机框架(MOF)来合成KNbO₃@TMU-5杂化材料。在紫外光照射下,KNbO₃@TMU-5的氨生产率达到39.9 μmol·L⁻¹·h⁻¹·g,而在类似实验条件下,KNbO₃的氨生产率为20.5 μmol·L⁻¹·h⁻¹·g。通过使用不同的表征技术,特别是气体吸附、循环伏安法、X射线光电子能谱、光电流测量和傅里叶变换红外光谱,发现KNbO₃@TMU-5在氨生产中具有更高的光活性是由于其更高的比表面积、更高的电子-空穴分离效率以及Nb位点上更高的负电荷密度。这项工作表明,传统半导体(SCs)与光活性MOF的杂化可以提高SC@MOF杂化材料在不同反应中的光活性,特别是在诸如氮光转化为氨等动力学复杂反应中。