Suppr超能文献

比较离散组的最佳图表类型:条形图、点图和计数图。

Best Graph Type to Compare Discrete Groups: Bar, Dot, and Tally.

作者信息

Zhao Fang, Gaschler Robert

机构信息

Research Cluster D2L2, FernUniversität in Hagen, Hagen, Germany.

Faculty of Psychology, FernUniversität in Hagen, Hagen, Germany.

出版信息

Front Psychol. 2021 Dec 24;12:775721. doi: 10.3389/fpsyg.2021.775721. eCollection 2021.

Abstract

Different graph types might differ in group comparison due to differences in underlying graph schemas. Thus, this study examined whether graph schemas are based on perceptual features (i.e., each graph has a specific schema) or common invariant structures (i.e., graphs share several common schemas), and which graphic type (bar vs. dot vs. tally) is the best to compare discrete groups. Three experiments were conducted using the mixing-costs paradigm. Participants received graphs with quantities for three groups in randomized positions and were given the task of comparing two groups. The results suggested that graph schemas are based on a common invariant structure. Tally charts mixed either with bar graphs or with dot graphs showed mixing costs. Yet, bar and dot graphs showed no mixing costs when paired together. Tally charts were the more efficient format for group comparison compared to bar graphs. Moreover, processing time increased when the position difference of compared groups was increased.

摘要

由于底层图形模式的差异,不同的图形类型在组间比较中可能会有所不同。因此,本研究考察了图形模式是基于感知特征(即每个图形都有特定的模式)还是共同的不变结构(即图形共享几个共同的模式),以及哪种图形类型(条形图、点图还是计数图)最适合比较离散组。使用混合成本范式进行了三个实验。参与者收到随机排列的三组数量的图形,并被赋予比较两组的任务。结果表明,图形模式基于共同的不变结构。计数图与条形图或点图混合时显示出混合成本。然而,条形图和点图配对时没有显示出混合成本。与条形图相比,计数图是更有效的组间比较格式。此外,当比较组的位置差异增加时,处理时间会增加。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2ea/8740269/edf67db229e1/fpsyg-12-775721-g001.jpg

相似文献

1
Best Graph Type to Compare Discrete Groups: Bar, Dot, and Tally.
Front Psychol. 2021 Dec 24;12:775721. doi: 10.3389/fpsyg.2021.775721. eCollection 2021.
2
Graph schema and best graph type to compare discrete groups: Bar, line, and pie.
Front Psychol. 2022 Dec 19;13:991420. doi: 10.3389/fpsyg.2022.991420. eCollection 2022.
3
Shedding light on the graph schema: perceptual features versus invariant structure.
Psychon Bull Rev. 2008 Aug;15(4):757-62. doi: 10.3758/pbr.15.4.757.
4
Introducing hat graphs.
Cogn Res Princ Implic. 2019 Aug 14;4(1):31. doi: 10.1186/s41235-019-0182-3.
6
Estimating Bar Graph Averages: Overcoming Within-the-Bar Bias.
Iperception. 2021 Jan 20;12(1):2041669520987254. doi: 10.1177/2041669520987254. eCollection 2021 Jan-Feb.
8
Bar and line graph comprehension: an interaction of top-down and bottom-up processes.
Top Cogn Sci. 2011 Jul;3(3):560-78. doi: 10.1111/j.1756-8765.2009.01066.x. Epub 2009 Dec 11.
10
Expert interpretation of bar and line graphs: the role of graphicacy in reducing the effect of graph format.
Front Psychol. 2015 Oct 30;6:1673. doi: 10.3389/fpsyg.2015.01673. eCollection 2015.

引用本文的文献

1
Graph schema and best graph type to compare discrete groups: Bar, line, and pie.
Front Psychol. 2022 Dec 19;13:991420. doi: 10.3389/fpsyg.2022.991420. eCollection 2022.

本文引用的文献

1
Analyzing the fine structure of distributions.
PLoS One. 2020 Oct 14;15(10):e0238835. doi: 10.1371/journal.pone.0238835. eCollection 2020.
2
Introducing hat graphs.
Cogn Res Princ Implic. 2019 Aug 14;4(1):31. doi: 10.1186/s41235-019-0182-3.
3
Measuring Graph Literacy without a Test: A Brief Subjective Assessment.
Med Decis Making. 2016 Oct;36(7):854-67. doi: 10.1177/0272989X16655334. Epub 2016 Jun 27.
4
On the efficacy of procedures to normalize Ex-Gaussian distributions.
Front Psychol. 2015 Jan 7;5:1548. doi: 10.3389/fpsyg.2014.01548. eCollection 2014.
5
Bar and line graph comprehension: an interaction of top-down and bottom-up processes.
Top Cogn Sci. 2011 Jul;3(3):560-78. doi: 10.1111/j.1756-8765.2009.01066.x. Epub 2009 Dec 11.
6
What makes a visualization memorable?
IEEE Trans Vis Comput Graph. 2013 Dec;19(12):2306-15. doi: 10.1109/TVCG.2013.234.
8
Bar graphs depicting averages are perceptually misinterpreted: the within-the-bar bias.
Psychon Bull Rev. 2012 Aug;19(4):601-7. doi: 10.3758/s13423-012-0247-5.
9
An eye movement analysis of the spatial contiguity effect in multimedia learning.
J Exp Psychol Appl. 2012 Jun;18(2):178-91. doi: 10.1037/a0026923. Epub 2012 Feb 6.
10
Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses.
Behav Res Methods. 2009 Nov;41(4):1149-60. doi: 10.3758/BRM.41.4.1149.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验