State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
ACS Appl Bio Mater. 2021 Jul 19;4(7):5529-5541. doi: 10.1021/acsabm.1c00344. Epub 2021 Jun 16.
The microscopic process of biofilm development on carriers is critical for interfacial regulation of biofilms in attached-growth wastewater treatment. However, the process under shear stress has not been well understood. The study purposed to revisit the processes of biofilm formation on organic carriers under different shear stresses with special highlights on bacterial reversible adhesion and pioneers in the microbial community. Biofilm formation on high-density polyethylene, polyamide, acrylonitrile butadiene styrene plastic, polyvinyl chloride, and polycarbonate carriers under shear stresses ranging from 1.0 to 2.5 Pa was investigated using Couette-Taylor reactors. Employing extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory, the bacterial reversible adhesion regions ranging from 3.74 ± 0.20 to 5.51 ± 0.24 nm on an organic carrier were quantified for the first time, elucidating significant differences among different carriers ( < 0.01). The colonization of pioneers in the microbial community was significantly altered by shear stress rather than carrier properties ( < 0.01). In particular, the diversity of the biofilm microbial community was pronouncedly enhanced by a higher shear stress ( < 0.01). XDLVO analysis suggested that extracellular polymeric substances had a negative feedback on subsequent microbial adhesion and biofilm development, especially the transition from reversible to irreversible bacterial adhesion. This study contributed to a better understanding of the biofilm formation process at the microscopic scale and shed light on micro-interfacial manipulation for biofilm accumulation or renewal.
生物膜在载体上的微观发展过程对于附着生长废水处理中生物膜的界面调控至关重要。然而,剪切应力下的这一过程尚未得到很好的理解。本研究旨在重新研究不同剪切应力下有机载体上生物膜形成的过程,特别强调细菌可逆附着和微生物群落中的先驱者。使用 Couette-Taylor 反应器研究了剪切应力范围为 1.0 至 2.5 Pa 下高密度聚乙烯、聚酰胺、丙烯腈丁二烯苯乙烯塑料、聚氯乙烯和聚碳酸酯载体上的生物膜形成。首次利用扩展的 Derjaguin-Landau-Verwey-Overbeek(XDLVO)理论,量化了有机载体上细菌可逆附着区域的范围为 3.74±0.20 至 5.51±0.24nm,表明不同载体之间存在显著差异(<0.01)。微生物群落中的先驱者的定殖明显受到剪切应力的影响,而不是载体性质(<0.01)。特别是,更高的剪切应力明显增强了生物膜微生物群落的多样性(<0.01)。XDLVO 分析表明,细胞外聚合物对随后的微生物附着和生物膜发展有负面影响,特别是从可逆细菌附着到不可逆细菌附着的转变。本研究有助于更好地理解微观尺度上的生物膜形成过程,并为生物膜积累或更新的微界面操纵提供了启示。