Suppr超能文献

压力辅助法在 3D 打印高分子支架上涂覆陶瓷

Pressure-Assisted Coating of Ceramics on 3D-Printed Polymeric Scaffolds.

机构信息

Marquette University School of Dentistry, Milwaukee, Wisconsin, 53233 United States.

Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee 53211, Wisconsin, United States.

出版信息

ACS Appl Bio Mater. 2021 Aug 16;4(8):6462-6472. doi: 10.1021/acsabm.1c00608. Epub 2021 Jul 19.

Abstract

Pressure-assisted coating (PAC) is introduced to coat 3D-printed polymeric scaffolds with β-tricalcium phosphate (β-TCP) for tissue engineering applications. The method consists of four steps: infiltration of ceramic particles into the porous structure of the polymeric scaffold, dehydration of the slurry, compaction of ceramic particles around the scaffold, and heat treatment. The optimal coating is obtained at an infiltration speed of 400 mm/min followed by complete dehydration, compaction under ca. 8 MPa pressure, and subsequent heat treatment at 65 °C. The outcome is a uniformly coated scaffold with no deformation or structural defects, as confirmed by micro-CT analysis and laser and scanning electron microscopy. Scaffolds coated using the PAC method present superior interface bonding strength compared to those coated with a biomimetic approach. The contact angle decreased from 75.2 ± 1.4° for the uncoated scaffold to 39.6 ± 9.6° for the PAC specimen. PAC also increased the surface roughness from 0.66 ± 0.08 to 6.89 ± 0.26 μm and doubled the number of attached cells on the 3 day of culture. The described method is applicable to different structures, object sizes, pore sizes, and shapes. For instance, in-depth coating of a 10 mm × 10 mm ( × ) cone with a 58 ± 4 μm-thick layer of β-TCP can be achieved using PAC. The method can be used to coat other polymers, such as poly(lactic--glycolic acid) (PLGA). Successful coating of β-TCP on 3D-printed PLGA scaffolds is also presented as a proof of concept.

摘要

压力辅助涂层 (PAC) 被引入到 3D 打印的聚合物支架中,以涂覆β-磷酸三钙 (β-TCP) 用于组织工程应用。该方法由四个步骤组成:陶瓷颗粒渗透到聚合物支架的多孔结构中、泥浆脱水、陶瓷颗粒在支架周围压实和热处理。在渗透速度为 400mm/min 时获得最佳涂层,随后完全脱水、在约 8MPa 压力下压实,随后在 65°C 下进行热处理。结果是得到一个均匀涂层的支架,没有变形或结构缺陷,这一点通过微 CT 分析、激光和扫描电子显微镜得到证实。使用 PAC 方法涂覆的支架与使用仿生方法涂覆的支架相比,具有更高的界面结合强度。接触角从未涂层支架的 75.2±1.4°降低到 PAC 样品的 39.6±9.6°。PAC 还将表面粗糙度从 0.66±0.08μm 增加到 6.89±0.26μm,并将培养第 3 天附着的细胞数量增加了一倍。所描述的方法适用于不同的结构、物体尺寸、孔径和形状。例如,使用 PAC 可以在 10mm×10mm(×)的锥形物上实现 58±4μm 厚的β-TCP 深度涂层。该方法可用于涂覆其他聚合物,如聚乳酸-羟基乙酸共聚物(PLGA)。作为概念验证,还成功地将β-TCP 涂覆到 3D 打印的 PLGA 支架上。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验