Gibson John K
Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
J Phys Chem A. 2022 Jan 20;126(2):272-285. doi: 10.1021/acs.jpca.1c09090. Epub 2022 Jan 10.
Bond dissociation energies (BDEs) reported in the literature for lanthanide monofluorides and lanthanide monochlorides LnX, where X = F or Cl, exhibit substantial irregular variations across the Ln series. It is demonstrated here that correlations of these variations with reported experimentally based atomic energies to prepare the Ln constituent for bonding reveal the nature of the bonding. Whereas some molecular characteristics are well understood in the context of highly ionic bonding, with LnX considered to be (Ln)(X), some significant variations in BDEs are not well rationalized simply by ionization to convert Ln to Ln for bonding. Focusing here on lanthanide monofluorides LnF, a consideration of alternative Ln preparation schemes shows that a particularly good rationalization of BDEs is obtained by invoking the participation of a lanthanide 5d electron in bonding. This 5d participation could be in ionic (Ln)(F) via π-donation from F 2p to empty Ln 5d orbitals or in covalent π-bonded Ln:F via polarization from Ln 5d to F 2p, with these ionic and polar covalent perspectives ultimately being equivalent. The inference of lanthanide 5d involvement suggests that the valence 4f and 6s electrons do not effectively participate in some key aspects of the bonding, presumably due to poor spatial overlap with F 2p orbitals. An extension to actinide monofluorides, AnF, assumes analogous ionic or polar covalent bonding involving a valence 6d electron and results in predictions for BDEs that include a general decrease from left to right across the series, except for a distinctive local minimum at AmF. Determining the BDE for AmF would serve to evaluate the predictions and the underlying assumption of 6d bonding. The BDE assessments/predictions for neutral monofluorides, LnF and AnF, are also applied to cationic LnF and AnF, and it is noted that the approach can be directly extended to f-element monochlorides, monobromides, and monoiodides.
文献中报道的镧系元素一氟化物和镧系元素一氯化物LnX(其中X = F或Cl)的键解离能(BDEs)在整个镧系元素系列中呈现出显著的不规则变化。本文证明,这些变化与基于实验报道的原子能量之间的相关性,以制备用于成键的Ln组分,揭示了成键的本质。虽然在高度离子键的背景下,一些分子特征已得到很好的理解,其中LnX被认为是(Ln)(X),但BDEs中的一些显著变化不能简单地通过电离将Ln转化为Ln以进行成键来合理解释。本文聚焦于镧系元素一氟化物LnF,对替代的Ln制备方案进行考虑表明,通过引入镧系元素的5d电子参与成键,可以对BDEs进行特别好的合理化解释。这种5d参与可以通过从F 2p到空的Ln 5d轨道的π-给予以离子键(Ln)(F)的形式存在,或者通过从Ln 5d到F 2p的极化以共价π键合的Ln:F的形式存在,这些离子和极性共价观点最终是等效的。镧系元素5d参与的推断表明,价态4f和6s电子在成键的某些关键方面没有有效参与,大概是由于与F 2p轨道的空间重叠不佳。对锕系元素一氟化物AnF的扩展假设涉及价态6d电子的类似离子或极性共价键,并导致对BDEs的预测,包括整个系列从左到右的普遍下降,除了在AmF处有一个独特的局部最小值。确定AmF的BDE将有助于评估这些预测以及6d键合的潜在假设。对中性一氟化物LnF和AnF的BDE评估/预测也应用于阳离子LnF和AnF,并且注意到该方法可以直接扩展到f元素的一氯化物、一溴化物和一碘化物。