Suppr超能文献

基于神经网络的比例肌电手假肢控制分析。

Analysis of Neural Network Based Proportional Myoelectric Hand Prosthesis Control.

出版信息

IEEE Trans Biomed Eng. 2022 Jul;69(7):2283-2293. doi: 10.1109/TBME.2022.3141308. Epub 2022 Jun 17.

Abstract

OBJECTIVE

We show that state-of-the-art deep neural networks achieve superior results in regression-based multi-class proportional myoelectric hand prosthesis control than two common baseline approaches, and we analyze the neural network mapping to explain why this is the case.

METHODS

Feedforward neural networks and baseline systems are trained on an offline corpus of 11 able-bodied subjects and 4 prosthesis wearers, using the R score as metric. Analysis is performed using diverse qualitative and quantitative approaches, followed by a rigorous evaluation.

RESULTS

Our best neural networks have at least three hidden layers with at least 128 neurons per layer; smaller architectures, as used by many prior studies, perform substantially worse. The key to good performance is to both optimally regress the target movement, and to suppress spurious movements. Due to the properties of the underlying data, this is impossible to achieve with linear methods, but can be attained with high exactness using sufficiently large neural networks.

CONCLUSION

Neural networks perform significantly better than common linear approaches in the given task, in particular when sufficiently large architectures are used. This can be explained by salient properties of the underlying data, and by theoretical and experimental analysis of the neural network mapping.

SIGNIFICANCE

To the best of our knowledge, this work is the first one in the field which not only reports that large and deep neural networks are superior to existing architectures, but also explains this result.

摘要

目的

我们展示了最先进的深度神经网络在基于回归的多类比例肌电手假肢控制方面优于两种常见的基线方法,并分析了神经网络的映射,以解释为什么会这样。

方法

使用 R 分数作为指标,在 11 名健全受试者和 4 名假肢使用者的离线语料库上训练前馈神经网络和基线系统。使用各种定性和定量方法进行分析,然后进行严格评估。

结果

我们最好的神经网络至少有三层,每层至少有 128 个神经元;许多先前的研究使用的较小的架构表现得要差得多。性能良好的关键是既要最优地回归目标运动,又要抑制虚假运动。由于基础数据的特性,这是不可能用线性方法实现的,但使用足够大的神经网络可以非常精确地实现。

结论

神经网络在给定任务中的表现明显优于常见的线性方法,特别是当使用足够大的架构时。这可以通过底层数据的显著特性,以及对神经网络映射的理论和实验分析来解释。

意义

据我们所知,这项工作是该领域中第一个不仅报告大型和深度神经网络优于现有架构,而且还解释了这一结果的工作。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验