Suppr超能文献

一种机器视觉系统,用于预测牛舍中不同饲料的个体牛的采食量。

A machine vision system to predict individual cow feed intake of different feeds in a cowshed.

机构信息

Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, P.O.B. 653, Be'er Sheva 8410501, Israel; Precision Livestock Farming (PLF) Lab., Institute of Agricultural Engineering, Agricultural Research Organization (A.R.O.) - The Volcani Center, P.O.B 15159, Rishon Lezion 7505101, Israel.

Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, P.O.B. 653, Be'er Sheva 8410501, Israel.

出版信息

Animal. 2022 Jan;16(1):100432. doi: 10.1016/j.animal.2021.100432. Epub 2022 Jan 7.

Abstract

Data on individual feed intake of dairy cows, an important variable for farm management, are currently unavailable in commercial dairies. A real-time machine vision system including models that are able to adapt to multiple types of feed was developed to predict individual feed intake of dairy cows. Using a Red-Green-Blue-Depth (RGBD) camera, images of feed piles of two different feed types (lactating cows' feed and heifers' feed) were acquired in a research dairy farm, for a range of feed weights under varied configurations and illuminations. Several models were developed to predict individual feed intake: two Transfer Learning (TL) models based on Convolutional Neural Networks (CNNs), one CNN model trained on both feed types, and one Multilayer Perceptron and Convolutional Neural Network model trained on both feed types, along with categorical data. We also implemented a statistical method to compare these four models using a Linear Mixed Model and a Generalised Linear Mixed Model, showing that all models are significantly different. The TL models performed best and were trained on both feeds with TL methods. These models achieved Mean Absolute Errors (MAEs) of 0.12 and 0.13 kg per meal with RMSE of 0.18 and 0.17 kg per meal for the two different feeds, when tested on varied data collected manually in a cowshed. Testing the model with actual cows' meals data automatically collected by the system in the cowshed resulted in a MAE of 0.14 kg per meal and RMSE of 0.19 kg per meal. These results suggest the potential of measuring individual feed intake of dairy cows in a cowshed using RGBD cameras and Deep Learning models that can be applied and tuned to different types of feed.

摘要

目前,商业奶牛场缺乏奶牛个体采食量数据,而这是农场管理的一个重要变量。为了预测奶牛的个体采食量,我们开发了一个实时机器视觉系统,该系统包括能够适应多种饲料类型的模型。在一个研究奶牛场中,我们使用红-绿-蓝-深度(RGBD)相机获取了两种不同饲料类型(泌乳牛饲料和小母牛饲料)的饲料堆的图像,这些饲料的重量范围很广,配置和光照条件也各不相同。我们开发了几种模型来预测个体采食量:两个基于卷积神经网络(CNN)的迁移学习(TL)模型、一个基于两种饲料类型训练的 CNN 模型,以及一个基于两种饲料类型训练的多层感知机和卷积神经网络模型,同时还有类别数据。我们还实施了一种统计方法,使用线性混合模型和广义线性混合模型来比较这四个模型,结果表明所有模型都有显著差异。TL 模型表现最好,并且使用 TL 方法对两种饲料进行了训练。当在牛舍中手动收集的不同数据上进行测试时,这两个模型对于两种不同的饲料分别取得了 0.12 和 0.13 公斤/餐的平均绝对误差(MAE)和 0.18 和 0.17 公斤/餐的均方根误差(RMSE)。当模型在牛舍中使用系统自动收集的实际奶牛餐数据进行测试时,MAE 为 0.14 公斤/餐,RMSE 为 0.19 公斤/餐。这些结果表明,使用 RGBD 相机和可以应用于不同类型饲料的深度学习模型来测量牛舍中奶牛的个体采食量具有潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验