Al-Rifaie Hasan, Novak Nejc, Vesenjak Matej, Ren Zoran, Sumelka Wojciech
Faculty of Civil Engineering and Transport, Poznan University of Technology, 60-965 Poznan, Poland.
Faculty of Mechanical Engineering, University of Maribor, 2000 Maribor, Slovenia.
Materials (Basel). 2022 Jan 5;15(1):387. doi: 10.3390/ma15010387.
Auxetic structures can be used as protective sacrificial solutions for impact protection with lightweight and excellent energy-dissipation characteristics. A recently published and patented shock-absorbing system, namely, Uniaxial Graded Auxetic Damper (UGAD), proved its efficiency through comprehensive analytical and computational analyses. However, the authors highlighted the necessity for experimental testing of this new damper. Hence, this paper aimed to fabricate the UGAD using a cost-effective method and determine its load-deformation properties and energy-absorption potential experimentally and computationally. The geometry of the UGAD, fabrication technique, experimental setup, and computational model are presented. A series of dog-bone samples were tested to determine the exact properties of aluminium alloy (AW-5754, T-111). A simplified (elastic, plastic with strain hardening) material model was proposed and validated for use in future computational simulations. Results showed that deformation pattern, progressive collapse, and force-displacement relationships of the manufactured UGAD are in excellent agreement with the computational predictions, thus validating the proposed computational and material models.
负泊松比结构可作为具有轻质和优异能量耗散特性的冲击保护牺牲解决方案。一种最近发表并获得专利的减震系统,即单轴渐变负泊松比阻尼器(UGAD),通过全面的分析和计算分析证明了其有效性。然而,作者强调了对这种新型阻尼器进行实验测试的必要性。因此,本文旨在采用一种经济高效的方法制造UGAD,并通过实验和计算确定其载荷-变形特性和能量吸收潜力。介绍了UGAD的几何形状、制造技术、实验装置和计算模型。测试了一系列狗骨形样品,以确定铝合金(AW-5754,T-111)的精确性能。提出并验证了一种简化的(弹性、应变硬化塑性)材料模型,以供未来的计算模拟使用。结果表明,制造的UGAD的变形模式、渐进破坏和力-位移关系与计算预测结果非常吻合,从而验证了所提出的计算模型和材料模型。