Suppr超能文献

基于聚类模型的智能农业中无人机数据收集的轨迹设计。

Trajectory Design for UAV-Based Data Collection Using Clustering Model in Smart Farming.

机构信息

Department of Computing, School of Electrical Engineering and Computer Science, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan.

College of Information Technology, United Arab Emirates University, Abu Dhabi P.O. Box 17551, United Arab Emirates.

出版信息

Sensors (Basel). 2021 Dec 22;22(1):37. doi: 10.3390/s22010037.

Abstract

Unmanned aerial vehicles (UAVs) play an important role in facilitating data collection in remote areas due to their remote mobility. The collected data require processing close to the end-user to support delay-sensitive applications. In this paper, we proposed a data collection scheme and scheduling framework for smart farms. We categorized the proposed model into two phases: data collection and data scheduling. In the data collection phase, the IoT sensors are deployed randomly to form a cluster based on their RSSI. The UAV calculates an optimum trajectory in order to gather data from all clusters. The UAV offloads the data to the nearest base station. In the second phase, the BS finds the optimally available fog node based on efficiency, response rate, and availability to send workload for processing. The proposed framework is implemented in OMNeT++ and compared with existing work in terms of energy and network delay.

摘要

无人飞行器(UAV)由于其远程机动性,在促进偏远地区的数据收集方面发挥着重要作用。收集的数据需要在接近最终用户的地方进行处理,以支持对延迟敏感的应用。在本文中,我们提出了一种用于智能农场的数据收集方案和调度框架。我们将提出的模型分为两个阶段:数据收集和数据调度。在数据收集阶段,根据 RSSI 将物联网传感器随机部署以形成一个簇。UAV 计算最佳轨迹以从所有簇中收集数据。UAV 将数据卸载到最近的基站。在第二阶段,BS 根据效率、响应率和可用性找到最佳可用雾节点,以发送工作负载进行处理。所提出的框架是在 OMNeT++ 中实现的,并与现有工作在能量和网络延迟方面进行了比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c07/8747286/a4f09600815d/sensors-22-00037-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验