Faculty of Electronics and Information Technology, Warsaw University of Technology, 00-665 Warsaw, Poland.
Sensors (Basel). 2022 Jan 5;22(1):387. doi: 10.3390/s22010387.
Illegal discharges of pollutants into sewage networks are a growing problem in large European cities. Such events often require restarting wastewater treatment plants, which cost up to a hundred thousand Euros. A system for localization and quantification of pollutants in utility networks could discourage such behavior and indicate a culprit if it happens. We propose an enhanced algorithm for multisensor data fusion for the detection, localization, and quantification of pollutants in wastewater networks. The algorithm processes data from multiple heterogeneous sensors in real-time, producing current estimates of network state and alarms if one or many sensors detect pollutants. Our algorithm models the network as a directed acyclic graph, uses adaptive peak detection, estimates the amount of specific compounds, and tracks the pollutant using a Kalman filter. We performed numerical experiments for several real and artificial sewage networks, and measured the quality of discharge event reconstruction. We report the correctness and performance of our system. We also propose a method to assess the importance of specific sensor locations. The experiments show that the algorithm's success rate is equal to sensor coverage of the network. Moreover, the median distance between nodes pointed out by the fusion algorithm and nodes where the discharge was introduced equals zero when more than half of the network nodes contain sensors. The system can process around 5000 measurements per second, using 1 MiB of memory per 4600 measurements plus a constant of 97 MiB, and it can process 20 tracks per second, using 1.3 MiB of memory per 100 tracks.
污染物非法排入污水管网是欧洲大城市日益严重的问题。此类事件通常需要重启废水处理厂,成本高达数十 万欧元。如果发生这种情况,一个用于定位和量化公共设施网络中污染物的系统可以阻止此类行为并确定罪魁祸首。我们提出了一种用于污水网络中污染物检测、定位和量化的多传感器数据融合增强算法。该算法实时处理来自多个异构传感器的数据,如果一个或多个传感器检测到污染物,就会生成当前网络状态的估计值和警报。我们的算法将网络建模为有向无环图,使用自适应峰值检测,估计特定化合物的数量,并使用卡尔曼滤波器跟踪污染物。我们对几个真实和人工污水网络进行了数值实验,并测量了排放事件重建的质量。我们报告了我们系统的正确性和性能。我们还提出了一种评估特定传感器位置重要性的方法。实验表明,算法的成功率等于网络的传感器覆盖率。此外,当网络中超过一半的节点包含传感器时,融合算法指出的节点与排放引入的节点之间的中位数距离等于零。该系统每秒可处理约 5000 次测量,每次测量使用 1 MiB 内存,4600 次测量加 97 MiB 常数,每秒可处理 20 个轨迹,每次测量使用 1.3 MiB 内存,100 个轨迹。