Suppr超能文献

多光谱成像算法可预测黑色素瘤的 Breslow 厚度。

Multispectral Imaging Algorithm Predicts Breslow Thickness of Melanoma.

作者信息

Bozsányi Szabolcs, Varga Noémi Nóra, Farkas Klára, Bánvölgyi András, Lőrincz Kende, Lihacova Ilze, Lihachev Alexey, Plorina Emilija Vija, Bartha Áron, Jobbágy Antal, Kuroli Enikő, Paragh György, Holló Péter, Medvecz Márta, Kiss Norbert, Wikonkál Norbert M

机构信息

Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary.

Selye János Doctoral College for Advanced Studies, Clinical Sciences Research Group, 1085 Budapest, Hungary.

出版信息

J Clin Med. 2021 Dec 30;11(1):189. doi: 10.3390/jcm11010189.

Abstract

Breslow thickness is a major prognostic factor for melanoma. It is based on histopathological evaluation, and thus it is not available to aid clinical decision making at the time of the initial melanoma diagnosis. In this work, we assessed the efficacy of multispectral imaging (MSI) to predict Breslow thickness and developed a classification algorithm to determine optimal safety margins of the melanoma excision. First, we excluded nevi from the analysis with a novel quantitative parameter. Parameter s' could differentiate nevi from melanomas with a sensitivity of 89.60% and specificity of 88.11%. Following this step, we have categorized melanomas into three different subgroups based on Breslow thickness (≤1 mm, 1-2 mm and >2 mm) with a sensitivity of 78.00% and specificity of 89.00% and a substantial agreement (κ = 0.67; 95% CI, 0.58-0.76). We compared our results to the performance of dermatologists and dermatology residents who assessed dermoscopic and clinical images of these melanomas, and reached a sensitivity of 60.38% and specificity of 80.86% with a moderate agreement (κ = 0.41; 95% CI, 0.39-0.43). Based on our findings, this novel method may help predict the appropriate safety margins for curative melanoma excision.

摘要

Breslow厚度是黑色素瘤的一个主要预后因素。它基于组织病理学评估,因此在黑色素瘤初始诊断时无法用于辅助临床决策。在这项研究中,我们评估了多光谱成像(MSI)预测Breslow厚度的有效性,并开发了一种分类算法来确定黑色素瘤切除的最佳安全切缘。首先,我们用一个新的定量参数将痣排除在分析之外。参数s' 能够以89.60%的灵敏度和88.11%的特异性区分痣和黑色素瘤。在这一步之后,我们根据Breslow厚度(≤1mm、1 - 2mm和>2mm)将黑色素瘤分为三个不同亚组,灵敏度为78.00%,特异性为89.00%,一致性良好(κ = 0.67;95%CI,0.58 - 0.76)。我们将我们的结果与评估这些黑色素瘤皮肤镜和临床图像的皮肤科医生及皮肤科住院医师的表现进行了比较,他们的灵敏度为60.38%,特异性为80.86%,一致性中等(κ = 0.41;95%CI,0.39 - 0.43)。基于我们的研究结果,这种新方法可能有助于预测根治性黑色素瘤切除的合适安全切缘。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd97/8745435/d2122a483deb/jcm-11-00189-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验