Suppr超能文献

Effect of SH-group reagents on net water transport in frog urinary bladder.

作者信息

Adragna N, Bourguet J

机构信息

Department of Pharamacology and Toxicology, Wright State University, Dayton, OH 45435.

出版信息

Membr Biochem. 1987;7(1):23-39. doi: 10.3109/09687688709029427.

Abstract

The basal rate of water reabsorption and its acceleration by oxytocin, cyclic AMP (cAMP) or serosal hypertonicity in frog urinary bladders were monitored before and after exposure of the mucosal surface to sulfhydryl (SH) reactive reagents. The following observations were made: 1. N-ethylmaleimide (NEM, 10(-5)M) did not modify the basal water flux, but did potentiate the hydrosmotic response to oxytocin. At higher NEM concentrations, an increase in the basal flux was observed, while the oxytocin-induced water flux was strongly inhibited, if not, nullified. 2. Iodoacetamide (IAM, 10(-3)M) did not modify the basal water flux but did inhibit the oxytocin-, cAMP-, and serosal hypertonicity-induced increase in water permeability. Furthermore, the time course of the hydrosmotic response to oxytocin was significantly increased. 3. 5,5' dithio-bis-(2-nitrobenzoic acid) (DTNB, 10(-3)M) modified neither the basal nor the oxytocin-induced water flux when incubated at pH 8.1, but potentiated the inhibitory effect of NEM. However, at a mucosal pH of 6.5, DTNB inhibited the response to oxytocin by 30%. These results suggest that: (1) the three SH reagents affect differently the basal and the oxytocin-induced water pathways; and that (2) each of the changes in the oxytocin-induced paths occurs at a step following the hormonally-induced increase in intracellular cAMP concentration.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验