Suppr超能文献

锐钛矿型TiO(101)表面水分子/团簇的界面吸附与电子性质:拉曼光谱与密度泛函理论研究

Interfacial Adsorption and Electron Properties of Water Molecule/Cluster on Anatase TiO(101) Surface: Raman and DFT Investigation.

作者信息

Meng Xianze, Li Xinran, Zhang Qinhao, Zheng Runchao, Wu Liankui, Cao Fahe

机构信息

School of Materials, Sun Yat-sen University, Guangzhou 510006, China.

出版信息

Langmuir. 2022 Jan 25;38(3):1057-1066. doi: 10.1021/acs.langmuir.1c02624. Epub 2022 Jan 11.

Abstract

The hydrogen bond network reconstruction at the titanium/water interface was monitored by Raman spectroscopy. In addition, the adsorption properties and the surface electron properties of hydrogen bond cluster (HBC) configurations were analyzed using adsorption energy, work function, Mulliken charge population, and density of states (DOS) by the first-principles method based on density functional theory (DFT). Our results show that the hydrogen bond network of the aqueous solution is reconstructed under the interaction with the anatase TiO(101) surface with the transformation of the chain and free hydrogen bonds to complex hydrogen bonds. The adsorption energy of a single water molecule and HBC on the anatase TiO(101) surface are the lowest with the 1-DD-h (-0.851 eV) and 3-D-h-DDA (-1.048 eV) configurations, respectively. Over the long term, artificially regulating the structure of the HBC might be an effective and general way to slow down the metal anodic reaction without surface modification. Furthermore, the surface charge concentrates on the bridging oxygen atom, which will be the active site of the interface reaction. It is helpful to clarify the anodic corrosion reaction mechanism of the titanium spontaneous oxide film/water interface.

摘要

通过拉曼光谱监测钛/水界面处的氢键网络重构。此外,基于密度泛函理论(DFT)的第一性原理方法,利用吸附能、功函数、穆利肯电荷布居和态密度(DOS)分析了氢键簇(HBC)构型的吸附性质和表面电子性质。我们的结果表明,水溶液的氢键网络在与锐钛矿型TiO(101)表面相互作用下发生重构,链状和游离氢键转变为复杂氢键。单个水分子和HBC在锐钛矿型TiO(101)表面的吸附能在1-DD-h(-0.851 eV)和3-D-h-DDA(-1.048 eV)构型下分别最低。长期来看,人工调控HBC的结构可能是一种无需表面改性就能减缓金属阳极反应的有效且通用的方法。此外,表面电荷集中在桥氧原子上,这将是界面反应的活性位点。这有助于阐明钛自发氧化膜/水界面的阳极腐蚀反应机理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验