Heedy Sara, Marshall Michaela E, Pineda Juviarelli J, Pearlman Eric, Yee Albert F
Department of Chemical and Biomolecular Engineering, University of California, Irvine 92697-2700, United States.
Department of Ophthalmology, University of California, Irvine 92697, United States.
ACS Appl Bio Mater. 2020 Nov 16;3(11):8040-8048. doi: 10.1021/acsabm.0c01110. Epub 2020 Oct 29.
Despite ongoing efforts and technology development, the contamination of medical device surfaces by disease-causing microbes remains problematic. Two approaches to producing antimicrobial surfaces are using antimicrobial materials and applying physical topography such as nanopatterns. In this work, we describe the use of physical topography on a soft hydrogel to control microbial growth. We demonstrate this approach by using chitosan hydrogel films with nanopillars having periodicities ranging from 300 to 500 nm. The flat hydrophilic chitosan films exhibit antimicrobial activity against the pathogenic bacteria and filamentous fungi The addition of nanopillars to the hydrogel surface further reduces the growth of and up to ∼52 and ∼99%, respectively. Multiple modes of antimicrobial action appear to act synergistically to inhibit microbial growth on the nanopillar hydrogels. We verified that the strongly bactericidal and fungicidal nanopillared material retains biocompatibility to human epithelial cells with the MTT assay. The nanopillared material is a promising candidate for applications that require a biocompatible and antimicrobial film. The study demonstrates that taking advantage of multiple modes of antimicrobial action can effectively inhibit pathogenic microbial growth.
尽管一直在努力且技术不断发展,但致病微生物对医疗器械表面的污染仍然是个问题。制造抗菌表面的两种方法是使用抗菌材料和应用物理形貌,如纳米图案。在这项工作中,我们描述了在柔软水凝胶上利用物理形貌来控制微生物生长。我们通过使用具有周期范围为300至500纳米的纳米柱的壳聚糖水凝胶膜来证明这种方法。平坦的亲水性壳聚糖膜对致病细菌和丝状真菌具有抗菌活性。在水凝胶表面添加纳米柱进一步减少了 和 的生长,分别高达约52%和约99%。多种抗菌作用模式似乎协同作用以抑制纳米柱水凝胶上的微生物生长。我们通过MTT试验验证了具有强杀菌和杀真菌作用的纳米柱材料对人上皮细胞保持生物相容性。纳米柱材料是需要生物相容性和抗菌膜的应用的有前途的候选材料。该研究表明,利用多种抗菌作用模式可以有效抑制致病微生物的生长。