Suppr超能文献

在全国代表性样本中对儿童逆境数据进行累积风险、因素分析和潜在类别分析。

Cumulative risk, factor analysis, and latent class analysis of childhood adversity data in a nationally representative sample.

机构信息

School of Psychology, University of New South Wales, Kensington, NSW, Australia; Neuroscience Research Australia, Randwick, NSW, Australia.

出版信息

Child Abuse Negl. 2022 Mar;125:105486. doi: 10.1016/j.chiabu.2022.105486. Epub 2022 Jan 11.

Abstract

BACKGROUND

Childhood adversity is a multifaceted construct that is in need of comprehensive operationalisation.

OBJECTIVE

The aim of this study was to explore the optimal method to operationalise a scale of adverse childhood experiences (ACEs).

PARTICIPANTS AND SETTING

Data were from Wave 1 of the Personality and Total Health (PATH) Through Life Project (N = 7485, 51% women). Participants from three age groups (20-25, 40-45, 60-65) retrospectively reported their childhood experiences of domestic adversity on a 17-item scale (e.g., physical abuse, verbal abuse, neglect, poverty).

METHODS

We compared three approaches to operationalising the 17-item scale: a cumulative risk approach, factor analysis, and latent class analysis (LCA). The cumulative risk and dimensional models were represented by a unidimensional and two-dimensional model respectively using confirmatory factor analysis (CFA).

RESULTS

The cumulative risk approach and LCA were viable approaches to operationalising ACE data in PATH. CFA of the dimensional model produced latent factors of threat and deprivation that were highly correlated, potentially leading to problems with multicollinearity when estimating associations. LCA revealed six classes of ACEs: high adversity, low adversity, low affection, authoritarian upbringing, high parental dysfunction, and moderate parental dysfunction.

CONCLUSION

Our study found multiple latent classes within a 17-item questionnaire assessing domestic adversity. Using both the cumulative method and latent class approach may be a more informative approach when examining the relationship between ACEs and later health outcomes. Future ACE studies may benefit by considering multi-dimensional approaches to operationalising adversity.

摘要

背景

童年逆境是一个多方面的概念,需要进行全面的操作化。

目的

本研究旨在探讨操作不良童年经历(ACEs)量表的最佳方法。

参与者和设置

数据来自人格与整体健康(PATH)终身研究项目的第 1 波(N=7485,51%为女性)。来自三个年龄组(20-25、40-45、60-65 岁)的参与者回顾性地报告了他们在 17 项量表上的童年家庭逆境经历(例如,身体虐待、言语虐待、忽视、贫困)。

方法

我们比较了三种操作 17 项量表的方法:累积风险方法、因子分析和潜在类别分析(LCA)。累积风险和维度模型分别使用验证性因子分析(CFA)表示为单维模型和二维模型。

结果

累积风险方法和 LCA 是 PATH 中操作 ACE 数据的可行方法。维度模型的 CFA 产生了威胁和剥夺的潜在因素,这些因素高度相关,在估计关联时可能会导致多重共线性问题。LCA 揭示了 ACE 的六个类别:高逆境、低逆境、低亲情、专制教养、高父母功能障碍和中度父母功能障碍。

结论

我们的研究在评估家庭逆境的 17 项问卷中发现了多个潜在类别。在研究 ACE 与后期健康结果之间的关系时,使用累积方法和潜在类别方法可能是一种更具信息量的方法。未来的 ACE 研究可能受益于考虑使用多维方法来操作逆境。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验