School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, Hubei, China.
J Inorg Biochem. 2022 Apr;229:111719. doi: 10.1016/j.jinorgbio.2022.111719. Epub 2022 Jan 5.
Advances in chelator design are the cornerstone for the development of metals like copper and gallium based biomedical agents and radiopharmaceuticals. To develop optimal chelating ligands, we explored the synthesis and chelating properties of azaheterocycle pendant armed 1,4,7-triazacyclononane (TACN) dimethylcarboxylate derivatives and dimethylphosphonate derivatives. In the complexation kinetics test, dicarboxylate pendant armed TACN derivatives 2,2'-(7-((1H-imidazol-2-yl)methyl)-1,4,7-triazonane-1,4-diyl)diacetic acid (NODA-Im), 2,2'-(7-((1-methyl-1H-imidazol-2-yl)methyl)-1,4,7-triazonane-1,4-diyl)diacetic acid (NODA-MeIm), and 2,2'-(7-(thiazol-2-ylmethyl)-1,4,7-triazonane-1,4-diyl)diacetic acid (NODA-Thia) exhibited fast complexation kinetics towards Cu (II) cations, which were comparable to the frequently explored ligand 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA). And the diphosphonate pendant armed TACN derivative ((7-(thiazol-2-ylmethyl)-1,4,7-triazonane-1,4-diyl)bis(methylene))bis(phosphonic acid) (NODP-Thia) bound with Ga (III) cations at a much faster rate than NOTA. Density functional theory studies confirmed that the better complexation kinetics and metal chelating efficiency of NODA-Im, NODA-MeIm, NODA-Thia, and NODP-Thia could be ascribed to the lower Gibbs energies of corresponding chelator-metal complexes than NOTA-metal complexes. The kinetic inertness of the Cu (II) complex with NODA-Im, NODA-MeIm, and NODA-Thia was also demonstrated by cyclic voltammetry studies. Subsequently radiolabeling experiment demonstrated that these metal chelators could efficiently labeled with Cu or Ga in good radiochemical purities. These preliminary findings support NODA-Im, NODA-MeIm, NODA-Thia, and NODP-Thia as promising leading chelating agents for the development of bifunctional Cu and Ga chelators in biomedical applications.
螯合剂设计的进展是开发基于铜和镓的生物医学试剂和放射性药物等金属的基石。为了开发最佳的螯合配体,我们探索了氮杂杂环侧臂 1,4,7-三氮杂环壬烷(TACN)二羧酸甲酯衍生物和二膦酸酯衍生物的合成和螯合性质。在配合物动力学测试中,二羧酸酯侧臂 TACN 衍生物 2,2'-(7-((1H-咪唑-2-基)甲基)-1,4,7-三氮杂环壬烷-1,4-二基)二乙酸(NODA-Im)、2,2'-(7-((1-甲基-1H-咪唑-2-基)甲基)-1,4,7-三氮杂环壬烷-1,4-二基)二乙酸(NODA-MeIm)和 2,2'-(7-(噻唑-2-基甲基)-1,4,7-三氮杂环壬烷-1,4-二基)二乙酸(NODA-Thia)对 Cu(II)阳离子表现出快速的配合物动力学,与经常探索的配体 1,4,7-三氮杂环壬烷-1,4,7-三乙酸(NOTA)相当。并且,膦酸酯侧臂 TACN 衍生物((7-(噻唑-2-基甲基)-1,4,7-三氮杂环壬烷-1,4-二基)双(亚甲基)双(膦酸)(NODP-Thia)与 Ga(III)阳离子的结合速度比 NOTA 快得多。密度泛函理论研究证实,NODA-Im、NODA-MeIm、NODA-Thia 和 NODP-Thia 的更好的配合物动力学和金属螯合效率可以归因于相应的螯合剂-金属配合物的吉布斯自由能低于 NOTA-金属配合物的吉布斯自由能。循环伏安法研究还证明了 NODA-Im、NODA-MeIm 和 NODA-Thia 与 Cu(II)配合物的动力学惰性。随后的放射性标记实验表明,这些金属螯合剂可以以良好的放射化学纯度有效地与 Cu 或 Ga 标记。这些初步发现支持 NODA-Im、NODA-MeIm、NODA-Thia 和 NODP-Thia 作为有前途的双功能 Cu 和 Ga 螯合剂的先导螯合剂,用于生物医学应用。