Department of Molecular Microbiology and Biotechnology, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel.
Department of Physics, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland.
J Am Chem Soc. 2022 Mar 2;144(8):3468-3476. doi: 10.1021/jacs.1c11750. Epub 2022 Jan 24.
The apparent piezoelectricity of biological materials is not yet fully understood at the molecular level. In particular, dynamic noncovalent interactions, such as host-guest binding, are not included in the classical piezoelectric model, which limits the rational design of eco-friendly piezoelectric supramolecular materials. Here, inspired by the conformation-dependent mechanoresponse of the Piezo channel proteins, we show that guest-host interactions can amplify the electromechanical response of a conformationally mobile peptide metal-organic framework (MOF) based on the endogenous carnosine dipeptide, demonstrating a new type of adaptive piezoelectric supramolecular material. Density functional theory (DFT) predictions validated by piezoresponse force microscopy (PFM) measurements show that directional alignment of the guest molecules in the host carnosine-zinc peptide MOF channel determines the macroscopic electromechanical properties. We produce stable, robust 1.4 V open-circuit voltage under applied force of 25 N with a frequency of 0.1 Hz. Our findings demonstrate that the regulation of host-guest interactions could serve as an efficient method for engineering sustainable peptide-based power generators.
生物材料的明显压电性在分子水平上尚未得到充分理解。特别是,动态非共价相互作用,如主客体结合,不包括在经典的压电模型中,这限制了环保型压电超分子材料的合理设计。在这里,受 Piezo 通道蛋白构象依赖性机械响应的启发,我们表明主体-客体相互作用可以放大基于内源性肉毒碱二肽的构象可移动肽金属-有机骨架 (MOF) 的机电响应,展示了一种新型自适应压电超分子材料。由压电力显微镜 (PFM) 测量验证的密度泛函理论 (DFT) 预测表明,客体分子在主体肉毒碱-锌肽 MOF 通道中的定向排列决定了宏观机电性能。我们在施加 25 N 的力和 0.1 Hz 的频率下产生稳定、坚固的 1.4 V 开路电压。我们的发现表明,主体-客体相互作用的调节可以作为工程可持续肽基电源的有效方法。