Suppr超能文献

一种用于预测河流中硝酸盐浓度的非线性自回归外生(NARX)模型。

A nonlinear autoregressive exogenous (NARX) model to predict nitrate concentration in rivers.

作者信息

Di Nunno Fabio, Race Marco, Granata Francesco

机构信息

Department of Civil and Mechanical Engineering (DICEM), University of Cassino and Southern Lazio, Via Di Biasio, 43, 03043, Cassino, Frosinone, Italy.

出版信息

Environ Sci Pollut Res Int. 2022 Jun;29(27):40623-40642. doi: 10.1007/s11356-021-18221-8. Epub 2022 Jan 27.

Abstract

Forecasting nitrate concentration in rivers is essential for environmental protection and careful treatment of drinking water. This study shows that nonlinear autoregressive with exogenous inputs neural networks can provide accurate models to predict nitrate plus nitrite concentrations in waterways. The Susquehanna River and the Raccoon River, USA, were chosen as case studies. Water discharge, water temperature, dissolved oxygen, and specific conductance were considered exogenous inputs. The forecasting sensitivity to changes in the exogenous input parameters and time series length was also assessed. For Kreutz Creek at Strickler station (Pennsylvania), the prediction accuracy increased with the number of exogenous input variables, with the best performance achieved considering all the variables (R = 0.77). The predictions were accurate also for the Raccoon River (Iowa), although only the water discharge was considered exogenous input (South Raccoon River at Redfield-R = 0.94). Both short- and long-term predictions were satisfactory.

摘要

预测河流中的硝酸盐浓度对于环境保护和饮用水的精细处理至关重要。本研究表明,具有外部输入的非线性自回归神经网络能够提供准确的模型来预测水道中的硝酸盐加亚硝酸盐浓度。美国的萨斯奎哈纳河和浣熊河被选为案例研究对象。水流量、水温、溶解氧和电导率被视为外部输入。还评估了对外部输入参数变化和时间序列长度的预测敏感性。对于宾夕法尼亚州斯特里克勒站的克罗伊茨溪,预测准确性随着外部输入变量的数量增加而提高,考虑所有变量时性能最佳(R = 0.77)。对于爱荷华州的浣熊河,预测也很准确,尽管仅将水流量视为外部输入(雷德菲尔德的南浣熊河 - R = 0.94)。短期和长期预测均令人满意。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验