Suppr超能文献

从噪声中提取信号:一种混合图形和定量的流程挖掘方法,用于评估应用于急诊脑卒中护理的护理路径。

Signal from the noise: A mixed graphical and quantitative process mining approach to evaluate care pathways applied to emergency stroke care.

机构信息

Stanford Center for Biomedical Informatics Research, Stanford University, Stanford, CA, United States.

Department of Emergency Medicine, Stanford University, United States.

出版信息

J Biomed Inform. 2022 Mar;127:104004. doi: 10.1016/j.jbi.2022.104004. Epub 2022 Jan 25.

Abstract

OBJECTIVE

Mapping real-world practice patterns vs. deviations from intended guidelines and protocols is necessary to identify and improve the quality of care for emergent medical conditions like acute ischemic stroke. Most status-quo process identification relies on expert opinion or direct observation, which can be biased or limited in scalability. We propose a mixed graphical and quantitative process mining approach to Electronic Health Record (EHR) event log data as a unique opportunity not only to more easily identify practice patterns, but also to compare real-world care processes and measure their conformance or variability.

MATERIALS

Data was obtained from the event log of a major EHR vendor (Epic) for Stanford Health Care Hospital patients aged 18 years and older presenting to the ED from January 1, 2010 through December 31, 2018 and receiving tPA (tissue plasminogen activator) within 4.5 h of presentation.

METHODS

We developed an unsupervised process-mining algorithm to create a process map from clinical event logs. The method first identifies the most common events across the cohort. Then, all possible ordered events are recorded, and a summarized vector of nodes (events) and edges (events occurring in series) are mapped by their timing and probability. The highest probability ordered pairs are used to identify the most common path. We define measures for individual pathways conformity and average conformity across all encounters.

RESULTS

Automatically generated process mining graphs, and specifically it's the most common path, mimicked our institutions recommended "code stroke" clinical pathway. The average conformity score for our cohort was 0.36 (i.e. paths had an average of 36% overlap with all possible paths), with a range from high of 0.64 and low of 0.20.

DISCUSSION

This method allows for unsupervised visualization of the current state of common processes as well as their most common path, which can then be used to calculate the conformity of individual pathways through this process. These results may be used to evaluate the consistency of quality care at a given institution. It may also be extended to other common processes like sepsis or myocardial infarction care or even those which currently lack standardized clinical pathways.

CONCLUSION

Our mixed graphical and quantitative process mining approach represents an essential data analysis step to improve complex care processes by automatically generating qualitative and quantitative process measures from existing event log data which can then be used to target quality improvement initiatives.

摘要

目的

绘制现实实践模式与偏离既定指南和方案的映射图,对于识别和改进急性缺血性脑卒中等紧急医疗状况的护理质量是必要的。大多数现状流程识别依赖于专家意见或直接观察,这可能存在偏差或扩展性有限。我们提出了一种混合图形和定量过程挖掘方法,用于电子健康记录(EHR)事件日志数据,这不仅为更轻松地识别实践模式提供了机会,还为比较现实护理流程和衡量其一致性或可变性提供了机会。

材料

数据来自主要 EHR 供应商(Epic)的事件日志,涉及 2010 年 1 月 1 日至 2018 年 12 月 31 日期间在斯坦福健康保健医院就诊的年龄在 18 岁及以上的急诊科患者,这些患者在就诊后 4.5 小时内接受了 tPA(组织纤溶酶原激活物)治疗。

方法

我们开发了一种无监督的过程挖掘算法,用于从临床事件日志中创建流程图。该方法首先确定队列中最常见的事件。然后,记录所有可能的有序事件,并通过时间和概率映射节点(事件)和边(按顺序发生的事件)的摘要向量。使用最高概率有序对来识别最常见的路径。我们定义了个体途径一致性和所有遭遇平均一致性的度量。

结果

自动生成的过程挖掘图,特别是最常见的路径,模仿了我们机构推荐的“代码中风”临床路径。我们队列的平均一致性得分是 0.36(即路径与所有可能路径的平均重叠度为 36%),范围从高的 0.64 到低的 0.20。

讨论

这种方法允许对当前常见流程状态及其最常见路径进行无监督可视化,然后可以使用这些路径计算该过程中个体路径的一致性。这些结果可用于评估给定机构的质量护理一致性。它还可以扩展到其他常见流程,如脓毒症或心肌梗死护理,甚至那些目前缺乏标准化临床路径的流程。

结论

我们的混合图形和定量过程挖掘方法代表了一个必要的数据分析步骤,可以通过从现有事件日志数据自动生成定性和定量过程度量来改进复杂护理流程,然后可以使用这些度量来确定质量改进计划的目标。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验